URBAN HIGHWAY STORM drainage model

Research, Development and Technology

Turner-Fairbank Highway
Research Center
6300 Georgetown Pike
McLean, Virginia 22101

Report No.
FHWA/RD-83/044
U.S. Department of Transportation
Federal Highwey Administration

VOL. 4 SURFACE RUNOFF PROGRAM

Final Report
December 1983

This report documents the development and presents the user's manual for the Surface Runoff Program of the Hydraulics/Quality Module of this computer model. This program is an event model for both stormwater quantity and quality simulation. From the local design storms, either derived from the Precipitation Module or from other sources, this program computes the inlet hydrographs and estimates the inlet pollutographs. The computation scheme employed is a real area routing procedure.

Research and development in urban and rural highway storm drainage is included in the Federally Coordinated Program of Highway Research, Development, and Technology Project 5H "Highway Drainage and Flood Protection." Dr. Roy E. Trent is the Project Manager and Dr. D. C. Woo is the Contracting Officer's Technical Representative for this study.

This report is being distributed on request only due to the specialized nature of the contents.

Richard E. Hay, Director Office of Engineering and Highway Operations Research and Development Federal Highway Administration

NOTICE

This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof.

The contents of this report reflect the views of the Office of Research of the Federal Highway Administration, which is responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official policy of the Department of Transportation.

This report does not constitute a standard, specification, or regulation.
The United States Government does not endorse products or manufacturers. Trade or manufacturers' names appear herein only because they are considered essential to the object of this document.

TABLE OF CONTENTS
Page No.
TECHNICAL REPORT DOCUMENTATION PAGE i
LIST OF FIGURES iii
LIST OF TABLES iv
LIST OF EXHIBITS vi
I. OVERVIEW OF THE URBAN HIGHWAY STORM DRAINAGE MODEL 1
II. INTRODUCTION TO THE SURFACE RUNOFF PROGRAM 9
GENERAL APPROACH 9
CAPABILITIES AND LIMITATIONS 12
COMPUTATIONAL REQUIREMENTS 14
III. TECHNICAL APPROACH 15
COMPUTATIONAL ELEMENTS 15
SURFACE RUNOFF 15
GUTTER/CHANNEL FLOW ROUTING 20
DETENTION BASINS 26
INLET HYDRAULICS 28
RUNOFF QUALITY 33
QUALITY ROUTING 39
IV. USER'S MANUAL 45
INPUT REQUIREMENTS 45
PROGRAM DESCRIPTION 71
EXAMPLE PROBLEM 194
V. REFERENCES 222

LIST OF FIGURES

Figure No.
I-3

$$
I I-1
$$

II-2 Schematic Diagrams of Typical Urban Highway Cross Section

III-1
III-2

III-3

III-4
III-5
III-6
FHWA Depression Curb Opening Inlet

Inlet Efficiency Curves for $2^{\prime} \times 4^{\prime}$ Parallel Bar
Grate Inlet with Gutter Slope $=0.02$ 32
$\begin{array}{ll}\text { III-7 } & \text { Inlet Efficiency Curves for } 2^{\prime} \times 4^{\prime} \text { Parallel Bar } \\ & \text { Grate Inlet with Gutter Slope }=0.02\end{array}$
TSS Accumulation vs. Dry Days 35
III-8Development of Pollutograph (M_{c} vs. t) FromTime History of P_{t}37
IV-1 Example Infiltration Curves 62
IV-2 Program SRO General Structure 72
IV-3 Flowchart for Program SRO 74
IV-4 Flowchart for Subroutine GRAPH 79
IV-5 Flowchart for Subroutine HCURVE 83
IV-6 Flowchart for Subroutine GQUAL 95
IV-7 Flowchart for Subroutine GUTTER 101
IV-8 Flowchart of Subroutine OVRBNK 114
IV-9 Flowchart of Subroutine HYDRO 118
IV-10 Flowchart of Subroutine QSHED1 128
IV-11 Flowchart of Subroutine RECAP 133
IV-12 Flowchart of Subroutine RHYDRO 138
IV-13 Flowchart of Subroutine WSHED 163
IV-14 Flowchart of Subroutine SUMSTAT 169
IV-15 Program SRO Test Problem 195

LIST OF TABLES

Table No. Page No.
I-1 Major Features of the Precipitation Module 4Major Features of Hydraulics/Quality ModulePrograms5
I-3 Major Features of the Analysis Module 6
I-4
Major Features of the Cost Estimation Module 7
IV-1 Program SRO Input Data Requirements 46
IV-2 Typical Values for Horton Infiltration Formula for Grassed Areas 63
IV-3 Typical Values for Manning Coefficient for Overland Flow 69
IV-4 Plot Package Variables Not in Common 87
IV-5 Key Variables Not In Common For Subroutine GQUAL 96
IV-6 Key Variables Not In Common For Subroutine GUTTER 103
IV-7 Key Variables Not In Common For Subroutine HYDRO 121
IV-8 Key Variables Not Contained In Common For Subroutine QSHED1 129
IV-9 Key Variables Not Contained In Common For Subroutine RHYDRO 141
IV-10 Key Variables Not In Common For Subroutine WSHED 165
IV-11 Key Variables Not In Common For Subroutine SUMSTAT 170
IV-12 Key Variables Not In Common For Subroutine CARRY 174
IV-13 Common Block LAB 180
IV-14 Common Block ABLK 181
IV-15 Common Block CON 181
IV-16 Blank Common 182
IV-17 Common Block NEW 186
IV-18 Common Block POLUT 188
IV-19 Common Block INFIL 188

LIST OF TABLES (Continued)

Table No.
Page No.
IV-20 Common Block REMOVE 189
IV-21 Common Block TEST 189
IV-22 Common Block TAPES 190
IV-23 Common Block MAX 140
IV-24 Common Block INLET 191
IV-25 Common Block MISC 192
IV-26 Common Block SLOPES 193
IV-27 Common Block NOMOG 193

LIST OF EXHIBITS

Exhibit No.
IV-1 Example Problem Data IV-2 Example Problem Output 199

Page No.
196

CHAPTER I
OVERVIEW OF THE URBAN HIGHWAY STORM DRAINAGE MODEL

The Urban Highway Storm Drainage Model consists of four modules in six computer programs, developed for the Federal Highway Administration, U.S. Department of Transportation by the Water Resources 'Division of Camp Dresser \& McKee Inc. The basic purpose of this package of programs is to provide the engineer with computational tools to assist in the analysis and design of highway drainage systems. Due to the nature of the problem, this model is not intended to fully automate the design process. Each module or program can be used separately to suit the designer's purpose.

The programs of the model are organized into four related but independent modules, as follows:

- Precipitation Module
- Hydraulics/Quality Module

Surface Runoff. Program
Inlet Design Program
Drainage Design Program

- Analysis Module
- Cost Module

The Precipitation Module can perform a variety of statistical analyses on long-term hourly precipitation data and generate design storm hyetographs. The Hydraulics/Quality Module is the basic design tool in the package. This module simulates time-varying runoff quantity and quality, locates stormwater inlets and sizes the conduits of the major drainage system. The Analysis Module simulates unsteady gradually-varied flow in the drainage system and can be used to analyze complex hydraulic conditions,
such as surcharge and backwater, that may be encountered during extreme storm events. The Cost Module can be used to estimate construction, operation and maintenance, and total annual costs associated with the drainage system.

The interrelationships among the computer programs are illustrated by Figure I-1 As can be seen from this figure, there are a variety of ways in which these programs can be used independently or in conjunction with each other. This flexibility should allow the engineer to apply one or more of these programs to a wide variety of common stormwater-related problems. The major features of each of the programs are summarized in Tables I-1 through I-4

This chapter is intended only to give the reader a broad overview of the Urban Highway Storm Drainage Model. To gain an understanding of the potential applications, the capabilities and the limitations of a particular program in the package, the engineer will need to study the appropriate User's Manual and Documentation Report.

This report is the User's Manual and Documentation Report for the Analysis Module. Chapter 2 of the report is an introduction to this program, describing the general approach used in the program and how the program fits into the drainage design process. The technical approach employed in the program is presented in some detail in Chapter 3. Finally, Chapter 4 is a complete user's manual for the program including input requirements, a Fortran listing of the program, and an example problem.

This Program is an event model for both stormwater quantity and and quality simulation. For stormwater quantity, it is used for design of new drainage system in the Inlet Design Program in determining locations of the selected inlets and in calculating the inlet hydrographs, or for anlaysis of existing drainage systems in deriving the inlet hydrographs. For stornwater quality, it is used to compute the accumulation and washoff

FIGURE I-1 Urban Highway Storm Drainage Model

TABLE I-1
 MAJOR FEATURES OF THE PRECIPITATION MODULE

- Derivation of Hyetographs of Selected Return Frequency, Duration, and Skew
- Statistical Analysis of Hourly Rainfall Records to Generate Intensity-Duration-Frequency Curves
- Frequency of Occurrence Analysis of Hourly Rainfall Records for Peak Rainfall Intensity, Storm Duration, and Dry Period Duration
- Statistical Analysis of Hourly Rainfall Records for Storm Skew

TABLE I-2
MAJOR FEATURES OF HYDRAULICS/QUALITY MODULE PROGRAMS

INLET DESIGN PROGRAM (INLET)

- Simulation of Time-Varying Runoff and Gutter/Channel Flow
- Spacing of Fixed-Size Inlets in Gutters or Channels
- Prespecification of Inlet Locations if Required
- Simulation of Six Basic Inlet Types

SURFACE RUNOFF PROGRAM (SRO)

- Simulation of Time-Varying Runoff and Gutter/Channel Flow
- Simulation of Accumulation and Washoff of Suspended Solids and Associated Pollutants
- Simulation of All Inlet Types Considered in Inlet Design Program
- Simulation of Four Types of Gutters/Channels
- Generation of Runoff Tape (Inlet Hydrographs and Pollutographs)

DRAINAGE DESIGN PROGRAM (DRAIN)

- Standard Pipe Sizing
- Sizing of Trapezoidal Open Channels
- Routing of Pollutants Through Drainage System
- Simulation of Treatment at Outfalls (Suspended Solids Removal)

TABLE 1-3
MAJOR FEATURES OF THE ANALYSIS MODULE

- Analysis of Extreme Storm Event Hydraulic Conditions in the Major Drainage System Such as Surcharge, Backwater, and Surface Flooding
- Simulation of Unsteady Gradually-Varied Flow in the Major Drainage System
- Simulation of Channels and Pipes of Five Different Cross-Sections
- Simulation of Pumping Station Operation

TABLE I-4
MAJOR FEATURES OF THE COST ESTIMATION MODULE

- Calculation of Capital Costs for Construction of Major Drainage Systems
- Calculation of Operation and Maintenance Costs and Total Annual Costs for Major Drainage Systems
- Estimation of Excavation and Backfill Volumes Associated with Construction of Major Drainage Systems
of surface pollutants in deriving the inlet pollutographs. The computation scheme employed in this Program is a real-area routing procedure, not a conceptual one. The user must first divide his study area into homogeneous subareas, then route the stormwater into the inlets.

CHAPTER II

INTRODUCTION TO THE SURFACE RUNOFF PROGRAM

The highway storm drainage system consists of a surface runoff conveyance system and a major drainage system. The Surface Runoff Program (SRO) is a powerful and flexible computer program for simulating the surface runoff conveyance system for either analysis or design purposes. Both time-varying quantity and quality of runoff can be simulated. Additionally, output from the Surface Runoff Program can be used as input either to the Drainage Design Program of the Hydraulics/Quality Module or to the Analysis Module.

GENERAL APPROACH

Figure II-1 shows a section of typical urban highway including the major components of the drainage system. As can be seen in the figure, runoff from the highway surface and the surface of the right-of-way is collected in roadside gutters and channels. The runoff is routed to a series of inlets, located to remove runoff so as to prevent flooding of the highway surface. The runoff so collected is then routed through the underground conduit system, generally to a nearby stream or other body of water.

In the design or analysis of highway drainage systems, such as illustrated in Figure II-1, the first basic step is the computation of surface runoff from a selected storm event. Often, this computation has consisted of no more than calculating a peak runoff flow for each drainage area using the rational formula. The Surface Runoff Program provides a more sophisticated tool that can compute full runoff hydrographs, route these hydrographs through the surface drainage system, and calculate inlet hydrographs. In addition, this program can simulate the accumulation and washoff of surface pollutants in the highway right-of-way.

FIGURE II-1. Typical Urban Highway Drainage System

Figure 11-2. Schematic Diagrams of Typical Urban Highway Cross-section:

The Surface Runoff Program is an event model, that is, it simulates runoff from an individual storm event, described by a complete hyetograph. To apply the program, the user must first divide his study area into homogeneous subareas that can be represented by a given area, width, slope, roughness coefficient and infiltration type. Similarly, the gutters and channels of the surface drainage system must be represented by sections of constant slope, cross-sectional area and roughness. The performance of inlets in the surface drainage system can be characterized by inlet efficiency curves input by the user or inlet efficiency equations built into the program. If runoff quality is to be simulated, then the user must select parameters describing the rate of accumulation of suspended solids and associated pollutants in the highway right-of-way.

In general, the Surface Runoff Program can be applied in two ways. First, the program can be used to analyze the performance of an existing or proposed surface drainage system during selected storm events. Second, the program can be used to compute inlet hydrographs and pollutographs for purposes of analysis or design of the subsurface drainage system. These hydrographs and pollutographs can be saved as a disc or tape file for subsequent use by the Drainage Design Program or the Analysis Module. The Drainage Design Programs can be used to size the subsurface drainage system and to analyze suspended solids removal facilities at system outfalls. The Analysis Module can be used to analyze the hydraulic performance of the subsurface drainage system during extreme storm events.

CAPABILITIES AND LIMITATIONS

Program SRO will simulate time-varying runoff quantity and quality from a selected storm event and route these flows and pollutants through gutters,channels, pipes, and detention basins of the highway right-of-way. The program is capable of simulating the following types of surface drainage structures:

- Circular pipes
- Trapezoidal open channels
- Overbank channels (double trapezoidal channe1s)
- Gutters (special case of trapezoidal channels)
- Detention basins with weir outflow control
- Detention basins with channel outflow control

The hydraulics of the following six basic inlet types may be simulated:

- Curb Opening Inlet
- Depressed Curb Opening Inlet
- Grate Inlet
- Depressed Grate Inlet
- Combination Inlet
- Depressed Combination Inlet

The accumulation, washoff, and transport of total suspended solids and the following associated pollutants may be modeled, if the user so desires:

- Dissolved Oxygen
- Biochemical Oxygen Demand
- Fecal Coliforms
- Chloride
- Ammonia
- Nitrite
- Nitrate
- Organic Nitrogen
- Total Phosphorus
- Dissolved Orthophosphates
- Oil and Grease
- Heavy Metals

The program will compute inlet hydrographs and pollutographs and write this information to a disc or tape file for subsequent use by the Drainage Design Program or the Analysis Module.

There are several limitations imposed on the user by the program as presently structured. These limitations include:

- The number of gutter or channel sections plus the number of inlets must be less than or equal to 150 ;
- The number of watersheds must be less than or equal to 200;
- The number of subareas per watershed must be less than or equal to three;
- The number of raingages must be less than or equal to 13 ;
- The number of infiltration types must be less than or equal to four (not including impervious surfaces);
- The number of detention basins must be less than or equal to three;
- The number of pollutants simulated must be less than or equal to 13; and
- The number of pollutant accumulation rates (for different
land surface types) must less than or equal to five.
- The detention basin computation is for evaluation of fixed-size basins only. For sizing a new detention basin several sizes will have to be assumed and their effects evaluated.

COMPUTATIONAL REQUIREMENTS

Program SRO was developed on a shared CDC 6600/6700 computer at the Naval Ship Research and Development Center in Carderock, Maryland. The program as presently dimensioned requires approximately 250000_{8} words of storage. A drainage system consisting of five gutters, one detention basin, and seven watersheds required approximately 85 seconds for a simulation of both quantity and quality conditions over a three hour and twenty minute period.

CHAPTER III

TECHNICAL APPROACH

This chapter describes the formulation and mathematical structure of the surface runoff system as it is simulated in SRO. The discussion is divided into seven parts dealing with the major computational topics: computational elements; surface runoff; gutter/channel flow routing; detention basins; inlet hydraulics; runoff quality; and quality routing. All equations presented in this chapter are given in terms of the British system of units, for the sake of simplicity. Corresponding equations in metric units are contained in the program.

COMPUTATIONAL ELEMENTS

The gutters/channels and watersheds of the drainage area being simulated must be discretized into a series of computational elements by the user. The gutters or channels being simulated are divided into a series of sections having constant hydraulic and geometric characteristics.

The drainage area along either side of the gutters and channels must also be discretized into a series of watersheds of constant hydraulic and geometric characteristics. Each watershed must drain to a gutter or channel; however, each watershed may be divided into as many as three subareas. Runoff is thus allowed to cascade from subarea to subarea before draining to a gutter or channel.

SURFACE RUNOFF
As stated above, each watershed may contain up to three subareas. The Surface Runoff Program considers the flow from the upstream subarea to cascade to the immediate downstream subarea. The basic flow routing algorithm in the program is the kinematic wave approximation which assumes that the
friction slope is equal to the slope of the plane. For this condition, the equations of continuity and uniform flow must be solved simultaneously to define at each time step the depth of flow and the outflow for each of the subareas in the watershed. The flow routing algorithm is applied sequentially to each subarea in the cascade.

A typical watershed is shown in Figure III-1; the three-plane runoff computation sequence can be generalized for an arbitrary subarea as shown in Figure III-2. At the end of each time step, Δt, we have two unknowns, Q and d_{1}, and two equations as indicated in Figure III-1. Three flow depths are shown in the figure:

$$
\begin{aligned}
& d_{0}=\text { depth at time } t ; \\
& d_{1}=\text { depth at time } t+\Delta t ; \text { and } \\
& d_{s}=\text { average depth of depression storage. }
\end{aligned}
$$

The objective of the calculations which pertains to this subarea is to find the new depth, d_{1}, determining, in the process, the outflow, Q, and maintaining mass continuity at all times. To accomplish this, two equations must be solved simultaneously. The first is the continuity, or storage, equation:

$$
\begin{equation*}
\frac{\Delta d}{\Delta t}=R-I+\frac{\left(Q_{i}-Q\right)}{A_{s}} \tag{III-1}
\end{equation*}
$$

where

$$
\begin{aligned}
\Delta d & =d_{1}-d_{0} ; \\
R & =\text { rainfall intensity during } \Delta t ; \\
I & =\text { infiltration rate during } \Delta t ; \\
Q & =\text { outflow from subarea; } \\
Q_{i} & =\text { inflow from upstream subarea; and } \\
A_{s} & =\text { surface area of plane. }
\end{aligned}
$$

The second is the Manning equation for overland flow with the hydraulic radius set equal to average depth (wide channel assumption):

$$
\begin{equation*}
Q=\frac{1.49}{n}{ }_{s} 1 / 2 w\left\{\left(\frac{d_{0}+d_{1}}{2}\right)-d_{s}\right\}^{5 / 3} \tag{III-2}
\end{equation*}
$$

FIGURE III-1. Representation of Typical Watershed

INFILTRATION: $I=k_{1}+\left(k_{2}-k_{1}\right) e^{-k_{3} t}$

$$
\text { OUTFLOW: } \mathrm{Q}=\frac{1.49}{n} s^{2 / 2} \mathrm{~W}\left(\frac{d_{0}+d_{1}}{2}-d_{S}\right)^{5 / 3}
$$

INFLOW: Q_{i} STORAGE: $\frac{\Delta d}{\Delta t}=R-I+\frac{\left(\frac{Q_{i}-Q}{A_{s}}\right)}{A_{S}}$

FIGURE III-2. Basic Flow Calculations for Typical Watershed Subarea

where
$S=$ slope of ground surface;
$n=$ Manning coefficient; and
$w=$ width of the plane.

Here, we have two equations in two unknowns, Q and d_{1}. Note that the flow computation is based on the average depth during Δt, and that surface detention is not included in the effective depth of flow. Rainfall intensity is an input quantity, variable in time, but considered constant during each time interval Δt. Infiltration is computed by a modified Horton formula written as:

$$
\begin{equation*}
I=k_{1}+\left(k_{2}-k_{1}\right) e^{-k_{3} t} \tag{III-3}
\end{equation*}
$$

where

$$
\begin{aligned}
I & =\text { infiltration loss rate, inches per hour; } \\
k_{1}, k_{2} & =\text { minimum and maximum infiltration rates, respectively; } \\
k_{3} & =\text { exponential rate loss in infiltration capacity; and } \\
t & =\text { time in hours. }
\end{aligned}
$$

During periods of light or zero rainfall, the net precipitation value, R-I, could become negative. Traps in the computer program prevent this occurrence.

The equations III-1 and III-2 are nonlinear algebraic equations and. their simultaneous solution is performed by the Newton-Raphson iterative technique. First, these two equations are combined and rearranged in the form:

$$
\begin{equation*}
F=\Delta d-\Delta t\left(k \tilde{d}^{5 / 3}+R_{n e t}\right)=0 \tag{III-4}
\end{equation*}
$$

where

$$
\begin{aligned}
F & =\text { Newton's function } \\
k & =-\frac{1.49}{n} s^{1 / 2} w / A_{s} \\
\tilde{d} & =\frac{d_{0}+d_{1}}{2}-d_{s}=d_{0}-d_{s}+\frac{\Delta d}{2} \\
R_{n e t} & =\left(R+\frac{Q_{i}}{A_{s}}-I\right)
\end{aligned}
$$

Then, differentiating F with respect to Δd yields

$$
\begin{equation*}
\frac{d F}{d(\Delta d)}=1-\Delta t \frac{5}{6} k \tilde{d}^{2 / 3} \tag{III-5}
\end{equation*}
$$

The Newton-Raphson technique then uses the following interative calculation to find Δd :

$$
\begin{equation*}
(\Delta d)_{n+1}=(\Delta d)_{n}-\frac{F_{n}}{\frac{d F_{n}}{d(\Delta d)}} \tag{III-6}
\end{equation*}
$$

The subscripts refer to the $n^{\text {th }}$ and $(n+1)^{\text {th }}$ iterations. Repeated application of this expression coverges upon $F=0$. However, because of the possibility of truncation when subtracting numbers that are very close to each other, F may never converge upon 0 on some computers, although an adequate solution has been reached. For this reason, the convergence check is based on the percentage change in Δd from the previous iteration reaching some small value. The convergence criterion used is:

$$
\begin{equation*}
\left|(\Delta d)_{n+1}-(\Delta d)_{n}\right|<\left|0.01(\Delta d)_{n}\right| \tag{III-7}
\end{equation*}
$$

The corresponding value of Δd gives the final depth, d_{p}, and the outflow, Q , can then be calculated from equation IV-2. The solution is then repeated for the next subarea in the cascade. The outflow from the downstream-most subarea is considered the outflow from the watershed and is input to the channel draining this watershed. The entire sequence is repeated for all time steps in the surface runoff simulation period.

GUTTER/CHANNEL FLOW ROUTING

The surface runoff calculated as described above is next routed through the gutters, channels, and pipes of the highway right-of-way. Consider the typical trapezoidal channel shown in Figure III-3. (Note that flow calculations for gutters and pipes are done in identical fashion to the calculations for the channel described below.) The outflow from each channel, Q, is determined beginning with the most upstream channel and working downstream, the

Figure III-3. Basic Flow Calculations For Typical Channel
outflow from each channel then serving as inflow to the next downstream channel if no inlet is located at the end of the upstream channel. If an inlet is located there, the appropriate carryover flow is calculated as described later in this chapter.

As with watershed subareas, the two unknowns at the end of each time step are Q and d_{1}. The known quantities are inflows Q_{i}, Q_{W}, and depth d_{0}, where

```
d
d
Q i
QW
Q = outflow from channel.
```

Note that Q_{W} is the outflow from the downstream-most plane of the cascaded subareas of the given watershed, as discussed above.

The solution for d_{1} and Q is similar to that used to compute flow off watershed subareas. Again, the kinematic wave approximation is made, and the equations of continuity and uniform flow are solved simultaneously at each time step. The continuity equation is:

$$
\begin{equation*}
\frac{\Delta V}{\Delta t}=Q_{i}+Q_{W}-Q \tag{III-8}
\end{equation*}
$$

where

$$
\Delta V=\text { volume change associated with } \Delta d .
$$

The outflow Q is determined from the Manning equation:

$$
\begin{equation*}
Q^{*}=\frac{1.49}{n} S^{1 / 2} R_{h}^{2 / 3} A \tag{III-9}
\end{equation*}
$$

where

```
Q* = outflow at do or d
    S = slope of channel bottom
    n = Manning coefficient
R}h=hydraulic radius (A/wetted perimeter
    A = cross-sectional area of flow
```

Q* is computed for both d_{0} and d_{1} and the average taken as Q. The Newton-Raphson iterative technique is employed to solve equations III-8 and III-9. These equations are combined and Newton's function F is formed as follows:

$$
\begin{equation*}
F=\Delta V+\Delta t\left(Q-Q_{i}-Q_{W}\right)=0 \tag{III-10}
\end{equation*}
$$

in which ΔV and Q are expressed in terms of d_{0} and d_{1}. The Newton's function F is differentiated with respect to Δd and the following iterative formula used:

$$
\begin{equation*}
(\Delta d)_{n+1}=(\Delta d)_{n}-\frac{F_{n}}{\frac{d F_{n}}{d(\Delta d)}} \tag{III-11}
\end{equation*}
$$

The subscripts refer to the $n^{\text {th }}$ and $(n+1)^{\text {th }}$ iterations. As in the subarea calculations, a convergence criterion other than $F=0$ is required. The following criterion is used and has proven to be stable and efficient:

$$
\begin{equation*}
\left|Q_{n+1}-Q_{n}\right|<0.001\left(Q_{n+1}\right) \tag{III-12}
\end{equation*}
$$

After a solution for d_{1} and Q is reached, the procedure is repeated for the next channel downstream, Q becoming Q_{i} for that channel.

Normal gutters and channels (types 1 and 2) will surcharge. The volume of surcharge,

$$
\begin{equation*}
V_{S U R}=\left(Q_{i}+Q_{W}-Q_{F U L L}\right) \Delta t \tag{III-13}
\end{equation*}
$$

where

$$
\begin{aligned}
V_{\text {SUR }} & =\text { surcharge volume for time step } \\
Q_{\text {FULL }} & =\text { outflow from channel at full depth }
\end{aligned}
$$

is set aside. Since $V_{\text {SUR }}$ may be positive or negative, the total volume in surcharge may increase or decrease with time. Each channel has its own surcharge volume which is handled separately from any other.

Overbank Channels
The flow in overbank channels, or double trapezoidal channels, Figure III-4, is handled normally until the depth reaches full channel depth for the base channel. At that point, if inflow exceeds outflow, i.e.,

$$
\begin{equation*}
Q_{i}+Q_{W}>Q_{\text {FULL }} \tag{III-14}
\end{equation*}
$$

then the excess, $Q_{i}+Q_{W}-Q_{\text {FULL }}$, is entered into the overbank channel as the sole inflow and the depth and flow from the overbank channel are found by iteration as for standard channels. The only difference in the calculations is that the wetted perimeter of the overbank channel does not include the top width of the base channel when full; cross-sectional areas, however, are computed in the normal fashion. In addition, length and slope are assumed to be the same for base and overbank channels.

The outflow from the overbank channel is then added to the outflow from the full base channel to arrive at the total outflow from the double trapezoidal channel. The outflow from the double trapezoidal channel then serves as inflow to the next channel in the system. When the volume in the overbank channel ($\mathrm{V}_{\mathrm{OVR}}$) is small enough such that the following condition is met:

$$
\begin{equation*}
Q_{i}+Q_{W}+\frac{V_{0 V R}}{\Delta t}<Q_{F U L L} \tag{III-15}
\end{equation*}
$$

then the overbank channel is emptied completely and the depth in the base channel falls below full depth. Of course, the overbank channel may flow again if the total inflow into the base channel later exceeds $Q_{\text {FULL }}$.

Figure III-4. $\begin{gathered}\text { Double-Trapezoidal } \\ \text { Channe }\end{gathered}$

Overbank channels do not surcharge in the manner described above. If the flow depth exceeds the full depth specified for the overbank channel, the banks are extended at the same side slopes to handle the excess flow, and a message is printed informing the user that this condition has occurred.

DETENTION BASINS

The computations for detention basins are made on the assumption that the change in depth of the detention basin over one time step will not significantly affect the outflow, which is controlled by either a weir or an outlet channel. It is also assumed that the surface area of the detention basin is constant. Thus, there is no need for an iterative solution technique. Figure III-5 shows a typical detention basin.

The outflow from a weir-controlled basin is computed from the discharge equation for flow over a sharp-crested rectangular weir:

$$
\begin{equation*}
Q=K W d_{0}^{3 / 2} \tag{III-16}
\end{equation*}
$$

where

$$
\begin{aligned}
K & =\text { weir coefficient }(=3.33) \\
W & =\text { length along weir crest } \\
d_{0} & =\text { depth over weir crest at time } t
\end{aligned}
$$

The outfiow from an outlet channel-controlled basin is computed from the Manning equation:

$$
\begin{equation*}
Q=\frac{1.49}{n} s^{1 / 2}\left(R_{h}\right)^{2 / 3} A \tag{III-17}
\end{equation*}
$$

where n, s, R_{h}, and A describe the outlet channel at time $t\left(d=d_{0}\right)$. The new depth in both cases is found from the continuity equation:

$$
\begin{equation*}
\frac{\Delta d}{\Delta t}=R+\left(Q_{i}+Q_{W}-Q\right) / A_{S} \tag{III-18}
\end{equation*}
$$

where d, R, Q_{j}, Q_{W} and Q are as previously defined, and $A_{S}=$ surface area of basin (constant with time).

$$
\begin{aligned}
& \text { FLOW : } Q=k W d_{0}{ }^{3 / 2}(\text { WEIR) } \\
& Q=\frac{1.49}{n} S \frac{1}{2}\left(R_{h}\right)^{2 / 3} A \text { (OUTLET CHANNEL) } \\
& \text { STORAGE : } \frac{\Delta d}{\Delta t}=R+\left(0+Q_{W}-Q\right) / A_{s}
\end{aligned}
$$

Figure III-5. Basic Flow Calculations for a Detention Basin

INLET HYDRAULICS

The Surface Runoff Program is structured to allow the user to simulate six basic types of inlets:

- Curb Opening Inlet;
- Depressed Curb Opening Inlet;
- Grate Inlet;
- Depressed Grate Inlet;
- Combination (Curb Opening and Grate) Inlet; and
- Depressed Combination Inlet.

The hydraulics of an inlet on grade may be simulated by either an equation approach or by an inlet efficiency curve approach. Equations developed by Izzard and described below are available in the program to simulate the hydraulics of, FHWA depressed curb openingsiniets. At present, no other inlet equations are in the program, but the Fortran code is structured to allow easy addition of equations for the other inlet types. (See the description of Subroutine Carry in the following chapter.)

As an alternative to the equation approach, inlet efficiency curves supplied as input can be used by the program to compute flow interception by inlets. Efficiency curves which give percent interception versus total gutter flow or channel depth can be input for a fixed-size.inlet of any of the six types listed above.

For sump inlets, the program assumes that all remaining flow is intercepted.

FHWA Depressed Curb Opening Inlets on Continuous Grades - Izzard Methodology (1)

A methodology has been developed by Izzard to determine the flow properties of the FHWA depressed curb opening inlet in gutters, as shown in Figure III-6. The methodology proceeds as follows.

FIGURE III-6. FHWA Depressed Curb Opening Inlet

Based upon the depth of flow in the gutter and the cross-sectional properties of the gutter, the flow spread T (ft) and the flow Q (cfs) may be determined. The design engineer is required to specify the depression width $W(f t)$. The depression depth is assumed to be equal to $\mathrm{W} / 12$ (feet). The following steps are then followed to compute the flow characeristics.

Step 1: Compute Froude Number:

$$
\begin{equation*}
F_{W}=\frac{0.262}{n}\left\{(T-W) S_{x}\right\}^{1 / 6} S^{1 / 2} \tag{III-19}
\end{equation*}
$$

where
$F_{W}=$ Froude Number at a distance W from the curb face
$n=$ Manning coefficient for the gutter
$W=$ Depression width (ft)
$S_{x}=$ Cross slope of the pavement section (ft/ft)
$S=$ Longitudinal slope of the pavement (ft/ft)
$T=$ Width of spread of approach flow (ft)

Step 2: Compute L_{1} :

$$
\begin{equation*}
L_{1}=2.79 W^{-1 / 6} S_{x} 0.3{ }_{F_{W}} \top \tag{III-20}
\end{equation*}
$$

where L_{1} is a characteristic inlet length given by the above equation.

Step 3: Compute maximum inlet length for weir flow:

$$
\begin{equation*}
L_{\max }=3.67 W^{-1 / 6} S_{x} \cdot{ }^{0.5} F_{W} T \tag{III-21}
\end{equation*}
$$

where $L_{\text {max }}$ is the maximum length for weir flow (ft).

Step 4: Compute inlet length for complete interception:

$$
\begin{equation*}
L_{100}=1.85 \mathrm{w}^{1 / 6} \mathrm{~F}_{\mathrm{w}} T \tag{III-22}
\end{equation*}
$$

where L_{100} is the length for complete interception (ft).

Step 5: Computer flow intercepted and carryover flow:

$$
\begin{align*}
& Q_{I}=\left(\frac{L_{I}}{L_{I}}\right) \text { when } L_{I}<L_{\max } \tag{III-23}\\
& Q_{I}=\left(\frac{L_{I}}{L_{100}}\right) Q \text { when } L_{I} \geq L_{\max } \tag{III-24}\\
& Q_{C}=Q-Q_{I} \tag{III-25}
\end{align*}
$$

where

$$
\begin{aligned}
Q & =\text { total gutter flow at inlet (cfs) } \\
Q_{I} & =\text { flow intercepted by inlet (cfs) } \\
Q_{C} & =\text { carryover flow (cfs) } \\
L_{I} & =\text { length of inlet (ft) }
\end{aligned}
$$

The equations presented are most accurate for $W=2 \mathrm{ft}$. and are reliable for $W<2 \mathrm{ft}$. For $W>2 \mathrm{ft}$., results obtained from the equations have not been confirmed.

Inlet Efficiency Curves

The simulation of inlet hydraulics by means of inlet efficiency curves proceeds as follows. The user supplies as input a group of inlet efficiency curves for the size and type of inlet in question, as shown in Figure III-7. (Actually, the user supplies the coordinates of points that define the curves.) The curves give the percentage of gutter or channel flow intercepted by the inlet as a function of the total gutter or channel flow at a given point

FIGURE III-7. Inlet Efficiency Curves for $2^{\prime} \times 4^{\prime}$ Parallel Bar Grate Inlet with Gutter Slope $=0.02$ (2)
in time or the percentage of channel flow intercepted as a function of depth of flow at a given point in time. For inlets in gutters, the flow interception capacity is a function of both the rongitudinal slope and the crossslope of the highway surface; thus, a family of curves, one curve for each of several typical longitudinal sllbpes and the cross-slopes, must be supplied. For inlets in channels, the flow interception capacity is a function of the channel slope; a family of curves for typical channel slopes must be input by the user. In the example curves of Figure IV-7, Q_{I} is the flow intercepted by the inlet, Q is the gutter/channel flow, and S_{x} is the crossslope of the highway.

For a given inlet, the program will select the appropriate inlet efficiency curve to use based on the slope of the gutter/channel section where the inlet is located and the cross-slope of the highway, if appropriate. At each time step, the program then calculates the gutter/channel flow, determines the inlet efficiency from the curve, and computes the flow intercepted by the inlet and the flow carried over to the next gutter/channel section.

RUNOFF QUALITY

The basis of the runoff quality computations in the Surface Runoff Program are numerous studies in which pollutant washoff rates have been related to antecedent surface buildup and runoff intensities by empirical functions. Antecedent surface buildup of pollutants can be expressed as a function of total suspended solids (TSS) buildup. TSS accumulation in turn can be written in the form:

$$
\begin{equation*}
P_{N L}=S S U_{L} \times \frac{N_{D}}{\text { HAFSAT }_{L}+N_{D}} \times A^{*}{ }_{N} \tag{III-26}
\end{equation*}
$$

where

$P_{N L} \quad$	TSS accumulation at the start of the storm on watershed subarea N having surface type L (lbs)
$S_{S U} \quad=$	Ultimate TSS load for surface type L (1bs/acre)
$N_{D} \quad=$	Equivalent number of dry days since the last storm

HAFSAT $_{\text {L }}=$ Number of dry days required for TSS load to reach onehalf the ultimate TSS load for surface type L
$A^{*}{ }_{N} \quad=$ Subarea area (acres)

The resultant TSS accumulation with time is illustrated in Figure III-8.

The values of $S S U_{L}$, the ultimate TSS load for surface type L, and HAFSAT $_{L}$, the number of dry days required for the TSS load to reach onehalf of $S S U_{L}$, are user-supplied values that define the TSS accumulation curve for each land surface type. At present, typical values for these parameters for five land surface types are supplied in the program in Block Data. If the user has site-specific runoff quality data available, he may wish to adjust these parameters accordingly. The user should refer to the Block Data section of Chapter IV for more information.

The actual number of dry days since the last storm must be modified to account for the number of times maintenance has occurred since the last rainfall. The corrected value for N_{D}, the equivalent number of dry days, is:

$$
\begin{equation*}
N_{D}=N_{S} \times\left[1+(1-E)^{1}+\ldots .+(1-E)^{n_{1}}\right] \tag{III-27}
\end{equation*}
$$

where
$N_{S}=$ number of days between maintenance
$\mathrm{n}=$ number of times maintenance was performed since the last storm
$E=$ efficiency of the maintenance practice

Once the TSS load, P_{NL}, on all the watershed subareas by surface type has been determined, the rate of washoff to the surface drainage system can be expressed by a first order rate equation as:

$$
\begin{equation*}
\frac{d P_{N L}^{\star}}{d t}=K \cdot P_{N L}^{\star} \tag{III-28}
\end{equation*}
$$

FIGURE III-8 ... TSS Accumulation
vs. Dry Days
where

```
\(P_{N L}^{*}=T S S\) load available for washoff \(=P_{N L} \times\) AVAIL
\(\mathrm{K} \quad=\) decay rate related to runoff intensity
AVAIL = availability factor related to runoff intensity
```

The decay rate K is assumed to be directly proportional to runoff rate. AVAIL is assumed to increase from some small value at low runoff intensities to 1.0 at the runoff intensity level at which essentially all the remaining load is available for washoff at the set decay rate.

Comparisons with measured data in the Detroit, Michigan area, suggested use of the following expression for AVAIL (3):

$$
\begin{equation*}
\text { AVAIL }=0.03+33 R^{2} \tag{III-29}
\end{equation*}
$$

where
$R=$ subarea runoff (in/hr)

At intensities greater than about $0.17 \mathrm{in} / \mathrm{hr}$., AVAIL is equal to 1.0 .

For the Detroit area, a value of K equal to 2.0 was found to give good results and is used here. This value implies a removal of 63 percent of the TSS load in 1 hour at 0.5 inches per hour or 86 percent in 5 hours at 0.3 inches per hour. The values of K and AVAIL should be considered to be somewhat site-specific and caution should be exercised in applying them without measured data for verification.

Figure III-9 illustrates the relation between time t and runoff R, TSS load remaining on watershed P, and rate of mass removal M. For simplicity, the availability factor is assumed here to be 1.0 .

FIGURE III-9. Development of
Pollutograph (M_{c} vs. t)
From Time History of P_{t}

The conservative routing routine routes the TSS load through the gutters, channels and pipes and, just before printing output, converts the resulting concentrations to concentrations of various constituents on the basis of measured relationships between TSS load and mass of these constituents. For the purpose of providing input to the drainage design program, DRAIN, the mass rate of each constituent entering each inlet at each time step is also calculated. These pollutographs are computed as:

$$
\begin{equation*}
P_{C}=M_{N L} \times F_{L C} \tag{III-30}
\end{equation*}
$$

where

$$
\begin{aligned}
P_{C} & =\text { mass rate of constituent } C \text { over } \Delta t \\
M_{N L}= & \text { mass rate of TSS load from surface type } L \text { in channel } N \\
& \text { over } \Delta t
\end{aligned}
$$

The P_{C} values for each inlet and each constituent are written on tape or disc at every time step for later use by the drainage design program. Typical values of $F_{L C}$ for five land surface types and twelve pollutants are included in Block Data. If the user has site-specific data he wishes to use, he should refer to the Block Data section of the next chapter.

The next section of this chapter describes the conservative routing of pollutants in the drainage area. To determine the concentration of a pollutant in the runoff as a function of time, it is necessary to consider a mass balance for each subarea. This mass balance may be written in a form similar to that considered for pollutant routing in gutters and channels. As a result, the mass balance techniques for the kinematic cascaded watersheds are described below following the description of pollutant routing in gutters and channels.

QUALITY ROUTING
As noted previously, the Surface Runoff Program has the capability of routing the TSS load through gutters and channels as a conservative constituent. A mass balance for each gutter/channel can be written:

$$
\begin{equation*}
\frac{d M}{d t}=\sum_{i=1}^{n} s_{i} \tag{III-31}
\end{equation*}
$$

where

$$
M=\text { the total mass of pollutant in the gutter/channel }
$$

$s_{i}=$ a flux of pollutant mass in or out of the gutter/channel
$n=$ the number of mass fluxes associated with the channel.
(This consists of upstream channel inflow, inlet carryover, and tributary watershed washoff.)

If we further define

$$
\begin{equation*}
M=\forall C \tag{III-32}
\end{equation*}
$$

where

$$
\begin{aligned}
& \forall=\text { the volume of water in the gutter/channel } \\
& C=\text { the concentration of pollutant }
\end{aligned}
$$

and

$$
\begin{equation*}
\frac{d M}{d t}=\frac{d(\forall C)}{d t}=C \frac{d \forall}{d t}+\forall \frac{d C}{d t} \tag{III-33}
\end{equation*}
$$

or

$$
\begin{equation*}
\forall \frac{d C}{d t}=\sum_{i=1}^{n} s_{i}-C \frac{d \forall}{d t} \tag{III-34}
\end{equation*}
$$

for simplicity, let $d c / d t=\dot{C}$ and $d \forall / d t=\dot{\forall}$. Equation III-34 becomes

$$
\dot{H C}=\sum_{i=1}^{n} s_{i}-C \dot{\psi}
$$

To achieve an integration of Equation III-35 with respect to time, we shall make the following assumption concerning the behavior of concentration in time:

$$
\begin{equation*}
c_{t+\Delta t}=C_{t}+\frac{\Delta t}{2}\left(\dot{C}_{t}+\dot{C}_{t+\Delta t}\right) \tag{III-36}
\end{equation*}
$$

where

$$
\left.\begin{array}{rl}
C_{t}, C_{t+\Delta t}= & \text { pollutant concentration at a time, } t, \text { and at a later } \\
& \text { time } t+\Delta t
\end{array}\right)
$$

Solving Equation III-36 for $\dot{C}_{t}+\Delta t$ we obtain

$$
\begin{equation*}
\dot{c}_{t+\Delta t}=\frac{2}{\Delta t} c_{t+\Delta t}-\left(\frac{2}{\Delta t} c_{t}+\dot{C}_{t}\right) \tag{III-37}
\end{equation*}
$$

In the general case C_{t} and C_{t} are known from initial conditions or the previous time step and can be treated as constants. Accordingly, we shall define:

$$
\begin{align*}
& \beta=\frac{2}{\Delta t} C_{t}+\dot{C}_{t} \tag{III-38}\\
& \alpha=\frac{2}{\Delta t} \tag{III-39}
\end{align*}
$$

which substituted in Equation III-37 give:

$$
\begin{equation*}
\dot{C}_{t+\Delta t}=\alpha C_{t+\Delta t}-\beta \tag{III-40}
\end{equation*}
$$

Equations III-35 and III-40 can be combined as follows:

$$
\begin{equation*}
\dot{C} \dot{\forall}+\forall(\alpha C-\beta)=\sum_{i=1}^{n} s_{i} \tag{III-41}
\end{equation*}
$$

or

$$
\begin{equation*}
c \dot{\psi}+C_{\alpha} \forall-\beta \forall=\sum_{i=1}^{n} s_{i} \tag{III-42}
\end{equation*}
$$

Usually, the term $\sum_{i=1}^{n} s_{i}$ contains several mass inflows and one mass outflow, QC, from the gutter/channel. This being the case, Equation III-42 is finally written as:

$$
\begin{equation*}
C \dot{\forall}+C \alpha \forall-\beta \forall=\sum_{i=1}^{n} s_{i}-Q C \tag{III-43}
\end{equation*}
$$

This equation can be solved for the concentration at the end of the time step Δt in the form:

$$
\begin{equation*}
C=\frac{\sum_{i=1}^{n} s_{i}+\beta \forall}{\dot{\forall}+\alpha \forall+Q} \tag{III-44}
\end{equation*}
$$

Equation III-44 is the form used in the quality routing and is solved sequentially for each gutter/channel. The outflow from each gutter/channel becomes the inflow to the next and total mass flux is summed using gutter/ channel and watershed contributions. If an inlet is located at the end of the gutter/channel, the carryover is computed and becomes the inflow to the next downstream gutter/channel.

The mass routed is total suspended solids in each gutter/channel by surface type. Thus, as noted previously, the resulting concentrations must be multiplied by the $F_{\text {LC }}$ factors of Equation III-30 prior to output.

Special Conditions
In the event of gutter/channel surcharge, the new concentration is computed for the full channel and the mass rate entering surcharge is simply the product of this concentration and the flow into surcharge storage. The surcharge is assumed to be fully mixed. The mass reentering the gutter/ channel (when inflow drops below full outflow) is in the same ratio to the total mass in surcharge as the volume leaving surcharge is to the total surcharge volume.

For double trapezoidal channels, the combined volume of both base and overbank channels is used to compute concentration and assumed to be fully mixed.

For detention basins, suspended solids removal is determined by the following relations for each time step in the simulation:

$$
\begin{align*}
D_{t} & =\frac{v_{t}}{Q_{t}} \tag{III-45}\\
R R_{t} & =\frac{D_{t}}{D+D_{t}} \tag{III-46}
\end{align*}
$$

where

$$
\begin{aligned}
D_{t} & =\text { Detention time at time } t \\
v_{t} & =\text { Volume at time } t \\
Q_{t} & =\text { Outflow at time } t \\
D & =\text { Detention time for } 50 \% \text { suspended solids removal (input factor) } \\
R R_{t} & =\text { Suspended solids removal factor at time } t
\end{aligned}
$$

If the outflow is zero at time t, all suspended solids entering the basin at that time are removed. If the outflow is non-zero, $R R_{t}$ of the suspended solids entering the basin at that time are removed.

Watershed Quality Routing
Since watersheds may be divided into as many as three consecutive subareas, pollutants must be routed overland in a kinematic cascade. This is done as follows.

A mass balance of the form in Equation III-31 may be written for each watershed subarea, namely:

$$
\begin{equation*}
\frac{d M}{d t}=\sum_{i=1}^{n} s_{i} \tag{III-47}
\end{equation*}
$$

where

$$
\begin{aligned}
M & =\text { total pollutant mass } i n \text { the volume of water on the subarea } \\
s_{\mathbf{i}} & =\text { pollutant mass flux into or out of the subarea volume } \\
n & =\text { number of mass fluxes. }
\end{aligned}
$$

Using the same procedures employed in the gutter/channel routing, we may obtain the following relationship:

$$
\begin{equation*}
C_{t}=\frac{\sum_{i=1}^{n} s_{i}+\beta \forall t}{\dot{\forall}_{t}+\alpha \forall_{t}+Q_{t}} \text { with } \alpha=\frac{2}{\Delta t} \text { and } \beta=\alpha C_{t}+\dot{C}_{t} \tag{III-48}
\end{equation*}
$$

where

$$
\begin{aligned}
& C_{t}=\text { subarea outflow concentration at time } t \\
& Q_{t}=\text { subarea outflow at time } t \\
& \forall_{t}=\text { subarea volume at time } t \\
& \dot{\forall}_{t}=\text { subarea volume time derivative at time } t \\
& \Delta t=\text { time step length } \\
& \dot{C}_{t}=\text { subarea outflow concentration time derivative at time } t \\
& s_{i}=\text { subarea mass influx at time } t \\
& n=\text { number of mass influxes. }
\end{aligned}
$$

The subarea outflow at time t, Q_{t}, is as previously determined in Equation III-2. The mass influxes consist of the mass flux entering from the upstream subarea and the mass washoff rate from the surface of the given subarea. The subarea volume V_{t} at time t is computed from the following relationship:

$$
\begin{equation*}
V_{t}=\left(d_{1}-d_{s}\right) A_{s} \tag{III-49}
\end{equation*}
$$

where

$$
d_{1}=\text { subarea depth at the end of time step }
$$

$$
\begin{aligned}
& d_{S}=\text { detention storage depth } \\
& A_{S}=\text { subarea area. }
\end{aligned}
$$

The subarea volume time derivative \dot{V}_{t} at time t is determined from the following equation:

$$
\begin{equation*}
\dot{V}_{t}=Q_{i t}-Q_{t}+\max \left(0,\left(R_{I}-R_{L}\right) A_{s}\right) \tag{III-50}
\end{equation*}
$$

where

$$
\begin{aligned}
& Q_{i t}=\text { inflow from upstream subarea at time } t \\
& Q_{t}=\text { outflow at time } t \\
& R_{I}=\text { rainfall intensity at time } t \\
& R_{L}=\text { infiltration rate at time } t \\
& A_{S}=\text { subarea area. }
\end{aligned}
$$

Suspended solids concentration for each of the five different surface types are routed in the above manner over the watershed and into the appropriate drainage element.

CHAPTER IV
USER'S MANUAL

The Surface Runoff Program requires, as input, a series of cards describing the characteristics of the drainage area and the storm event to be simulated. Several simulation control parameters must also be specified in the input deck. The printed output from the program includes a rainfall-runoff continuity summary, peak hydraulic conditions in each gutter, channel, or pipe and complete hydrographs and pollutographs for those drainage system elements selected by the user. In addition to printed output, the program writes all inlet hydrographs and pollutographs to a disc or tape file that can be used as input to other programs of the Urban Highway Storm Drainage Mode1.

This chapter gives a detailed description of the input requirements, a detailed program description and an example problem.

INPUT REQUIREMENTS

The input data required by the Surface Runoff program and the formats in which the data must be supplied are presented in Table IV-1. Input data are divided into the following ten card groups:

- Card Group 1: Simulation Control Data
- Card Group 2: Rainfall Data
- Card Group 3: Infiltration Data
- Card Group 4: Inlet Data
- Card Group 5: Gutter/Channe1 Data
- Card Group 6: Overbank Channel Data
- Card Group 7: Storage Basin Data
- Card Group 8: Watershed Data
- Card Group 9: Runoff Quality Data
- Card Group 10: Output Control Data

TABLE IV-1
PROGRAM SRO INPUT DATA REQUIREMENTS

Card Group	Format	Card Column	Description	Variable Name	Default Value
1A	414		SIMULATION CONTROL CARDS		
		1-4	Upstream Hydrograph File Number	JIN(1)	-
		5-8	Inlet Hydrographs File Number	Jout (1)	-
		9-12	```Print File Number (scratch file)```	JOUT(2)	-
		13-16	```Plot File Number (scratch file)```	JOUT(3)	-
1B	20A4	1-80	Title Information (2 cards)	TITLE	-
1C	I5	1-5	Basin Number	BASIN	-
	I5	6-10	Number of Time Steps Simulated	NSTEP	-
	I3	11-13	Start Hour	NHR	-
	12	14-15	Start Minute	NMN	-
	F5.1	16-20	Time Step Length (minutes)	DELT	-
	15	21-25	Number of Raingages	NRGAG	-
	I5	26-30	Units Option 0 - British Units 1 - Metric Units	IMET	0
2 A			RAINFALL CARDS		
	I5	1-5	Number of Rainfall Intervals	NHISTO	-
	F5.0	6-10	Duration of Rainfall Interval (minutes)	THISTO	-

TABLE IV-1
(Continued)

Card Group	Format	Card Column	Description	Variable Name	Default value
2 B		Repeat Card Group 2B for each raingage ($\mathrm{J}=1$, NRGAG). Place up to 5 rainfall intensities per card.			
	4F10.0	1-10	Rainfall Intensity (in/hr or $\mathrm{mm} / \mathrm{hr}$)	$\operatorname{RAIN}(1, \mathrm{~J})$	-
		11-20	Rainfall Intensity (in/hr or $\mathrm{mm} / \mathrm{hr}$)	$\operatorname{RAIN}(2, \mathrm{~J})$	-
		21-30	Rainfall Intensity (in/hr or $\mathrm{mm} / \mathrm{hr}$)	$\operatorname{RAIN}(3, \mathrm{~J})$	-
		$31-40$	Rainfall Intensity (in/hr or $\mathrm{mm} / \mathrm{hr}$)	$\operatorname{RAIN}(4, \mathrm{~J})$	-
		41-50	Rainfall Intensity (in/hr or $\mathrm{mm} / \mathrm{hr}$)	$\operatorname{RAIN}(5, \mathrm{~J})$	-
			INFILTRATION CARDS		
3 A	I10	1-10	Number of Infiltration Types	INFIL	-
3B		Repeat Card Group 3B for each infiltration type ($K=1$, INFIL, INFIL ≤ 4).			
	4F10.0	1-10	Maximum Infiltration Rate ($\mathrm{in} / \mathrm{hr}$ or $\mathrm{mm} / \mathrm{hr}$)	WLMAX(K)	-
		11-20	Minimum Infiltration Rate ($\mathrm{in} / \mathrm{hr}$ or $\mathrm{mm} / \mathrm{hr}$)	WLMIN(K)	-
		21-30	Decay Rate (hour $^{-1}$)	DECAY (K)	-
		31-40	Maximum infiltration (inches or millimeters)	DEPIN(K)	-

TABLE IV-1
(Continued)

TABLE IV-1
(Continued)

TABLE IV-1
(Continued)

Card Group	Format	Card Column	Description	Variable Name	Default Value
4 D			Efficiency Curves for Inlets in Channels (Omit Card Group 4D if INOMC $\neq 0$)		
			6 curves, one curve per card for channel slopes of $0.5,1$, $2,4,6$, and 9%, respectively.		
	12F6. 2	1-6	Ratio of Flow Intercepted to Channel Flow	QINLC(J,1)	
		7-12	Depth (ft or m)	QINLC(J,2)	
		13-18	Ratio of Flow Intercepted to Channel Flow	QINLC(J,3)	
		19-24	Depth (ft or m)	QINLC(J,4)	
		25-30	Ratio of Flow Intercepted to Channel Flow	QINLC(J,5)	
		31-36	Depth (ft or m)	QINLC(J,6)	
		37-42	Ratio of Flow Intercepted to Channel Flow	QINLC(J,7)	
		43-48	Depth (ft or m)	QINLC(J,8)	
		49-54	Ratio of Flow Intercepted to Channel Flow	QINLC(J,9)	
		55-60	Depth (ft or m)	QINLC ($\mathrm{J}, 10$)	
		61-66	Ratio of Flow Intercepted to Channel Flow	QINLC(J,11)	
		67-72	Depth (ft or m)	QINLC(J,12)	

TABLE IV-1
(Continued)

Card Group	Format	Card Column	Description	Variable Name	Default Value
4 E	FIO. 0	1-10	Inlet Capacity Reduction Factor	RD	1.0
		GUTTER/CHANNEL CARDS			
		Repeat channe	ard Group 5 for each gutter or two cards per element		
5A	I10	1-10	Gutter/Channel Number	NAMEG(N)	-
	I7	11-17	Upstream Station (hundreds of feet or meters)	ISTA1A(N)	-
	I2	19-20	Upstream Station (tens and units of feet or meters)	ISTA1B(N)	-
	I7	21-27	Downstream Station (hundreds of feet or meters)	ISTA2A(N)	-
	I2	29-30	Downstream Station (tens and units of feet or meters)	ISTA2B(N)	-
	F10.0	$31-40$	Width of Gutter/Channel; Diameter of Pipe (ft or m)	GWIDTH(N)	-
	F10.0	41-50	Gutter/Channel. Slope (ft/ft or m / m)	GSLOPE(N)	-
	F10.0	51-60	Reciprocal Side Slope 1 (ft/ ft or m / m; 1 must be the highway side)	GS1(N)	-

TABLE IV-1
(Continued)

TABLE IV-1
(Continued)

| $\begin{array}{c}\text { Card } \\ \text { Group }\end{array}$ | Format | $\begin{array}{c}\text { Card } \\ \text { Column }\end{array}$ | $\begin{array}{l}\text { Description }\end{array}$ | $\begin{array}{c}\text { Variable } \\ \text { Name }\end{array}$ |
| :--- | :--- | :--- | :--- | :--- | \(\left.\begin{array}{c}Default

Value\end{array}\right]\)

TABLE IV-1
(Continued)

Card Group	Format	Card Column	Description	Variable Name	Default Value
7B	9F8.0	21-25	Outlet Control Type	NP	-
		26-30	Raingage Number	IG	-
		1-8	Weir Length or Bottom Width of Outlet Channel (feet or meters)	GWIDTH(N)	-
		9-16	Basin Surface Area (acres or hectares)	$\operatorname{AREALK}(N)$	-
		17-24	Outlet Channel Slope (ft/ ft or m / m; required only if $\mathrm{NP}=6$)	GSLOPE (N)	-
		25-32	Outlet Channe1 Reciprocal Side Slope 1 (ft/ft or m / m; required only if $N P=6$)	GS1(N)	-
		33-40	Outlet Channel Reciprocal Side Slope 2 ($\mathrm{ft} / \mathrm{ft}$ or m / m; required only if NP $=6$)	GS2(N)	-
		41-48	Weir Coefficient or Outlet Channel Manning Roughness Coefficient	GN(N)	-
		49-56	Basin Length (feet or meters)	GLEN(N)	-
		57-64	Basin Volume (acre-feet or cubic meters)	VOLMLK(N)	-
		65-72	Initial Depth in Basin (feet or meters; measured from crest of weir or bottom of outlet channel; may be negative)	GDEPTH (N)	-
			Terminate this card group with two blank cards. (If there are no surface storage basins, supply two blank cards.)		

TABLE IV-1
(Continued)

TABLE IV-1
(Continued)

TABLE IV-1
(Continued)

Card Group	Format	Card Column	Description	Variable Name	Default Value
OUTPUT CONTROL CARDS					
10A	215	1-5	Number of Gutters, Channels and Inlets for which Flows and Quality Constituents are to be Printed.	NPRNT	-
		6-10	Number of Time Steps between Printings	INTERV	-
Omit Card Group 10B if NPRNT=0.					
10B	1615		Gutter, Channel and Inlet Numbers for which Flows and Quality Constituents are to be Printed (16 values per card)	IPRNT(N)	-
10C	I5		Number of Gutters, Channels and Inlets for which Flow and/or Quality Constituents are to be Plotted	NPLOT	-
Omit Card Groups 10D and 10E if NPLOT=0.					
10 D	16 I 5		Gutter, Channel and Inlet Numbers for which Flow and/ or Quality Constituents are to be Plotted (16 values per card)	IPLOT(N)	-
Enter 1 in the appropriate columns of Card Group 10E for those constituents to be plotted ($0=$ no plot; $1=$ plot)					

TABLE IV-1
(Continued)

Card Group	Format	Card Column	Description	Variable Name	Default Value
10E	14 I 1	1	Flow		
		2	Dissolved 0xygen		
		3	B0D5		
		4	Suspended Solids		
		5	Fecal Coliforms		
		6	Chloride		
		7	Ammonia-nitrogen		
		8	Nitrite-nitrogen		
		9	Nitrate-nitrogen		
		10	Organic Nitrogen		
		11	Total Phosphorus		
		12	Dissolved Orthophosphate		
		13	Grease		
		14	Heavy Metals		

Data required in each of these card groups are discussed below.

Card Group One: Simulation Control Data

Card Group 1A consists of a single card that identifies the unit numbers on the user's computer system corresponding to the four disc files used by the program. The first file, which is optional, contains any hydrographs which may flow into the system being analyzed. These hydrographs may be needed if the total drainage area is so large that SRO must be run for each of several sub-drainage areas. In this case, the SRO simulated flow at the downstream end of a gutter or channel in one of these sub-areas can be used as an input hydrograph to the upstream end of a connecting gutter or channel in another sub-area. The next dise file, an fnlet hydrograph file, stores the results from the present run of SRO for use in the Drainage Design Program. If the latter program is to be used, then this file is required. Print and plot file numbers should be included if the user desires a printed or plotted output, respectively, of the resulting hydrographs.

Card Group 1B consists of two title cards which can be used to describe the drainage project being analyzed or designed.

Card Group 1C contains several simulation control parameters. The first variable is a basin number that can be assigned by the user for identification purposes. The next four variables control the duration of the simulation, giving the number of time steps, the hour and minute of the simulation start time, and the time step length in minutes. The next variable, NRGAG, gives the number of raingages to be employed. This allows the user to input more than one hyetograph if spatial variation of rainfall is considered significant for his project. For most applications of this program, one raingage will be sufficient. The last variable selects the units option. If IMET is set equal to zero, all input and output will be in British units. If IMET equals one, metric units will be used.

A few additional words should be said about the selection of the time step length. Time steps ranging from one minute to five minutes have been used successfully with this program. In cases where the drainage system
includes steep channels immediately downstream of inlets, there is a possibility that all water will empty out of the channel in less than a time step and a problem in the solution for open channel flow will arise, signalled by an error message that the program is calculating a negative depth. If this occurs, the time step length should be shortened.

Card Group Two: Rainfall Data

This card group is used to input the design hyetograph(s), the duration and return frequency of which must be selected by the user in accordance with local design criteria. Card Group 2A consists of a single card that specifies the number of rainfall intervals, NHISTO, and the duration of the rainfall interval in minutes, THISTO. The design hyetograph and the number of dry days can be obtained from the results of the Precipitation Module or from whatever local sources of design storm information the user has.

Card Group 2B consists of as many cards as are required for the hyetograph(s) to be specified. Five rainfall intensities should be placed on each card. (If the number of rainfall intervals NHISTO is not an integral multiple of five, then the last card for each hyetograph will have fewer than five rainfall intensities.)

When more than one hyetograph is input (i.e., NRGAG >1 in Card Group One), all the cards for a given hyetograph should be fully specified before input of the next hyetograph is begun. Each hyetograph should begin on a new card and must have the same interval duration and number of intervals as every other hyetograph.

Card Group Three: Infiltration Data

This card group is used to specify the infiltration characteristics of up to four types of pervious surfaces in the drainage area being simulated. Card Group 3A gives the number of infiltration types, INFIL, to be specified. (The impervious surface type is included in the program itself and need not be specified here as input.)

Card Group 3B, a single card, is supplied for each infiltration type. The four variables given by this card are the four constants in the Horton infiltration formula, equation III-3 in the previous chapter of this report. The Horton formula defines an infiltration curve, examples of which are given in Figure IV-1 and Table IV-2.

If no land types other than impervious surfaces are to be specified, then INFIL should be set equal to zero on Card Group 3A and Card Group 3B should be omitted.

Card Group Four: Inlet Data

This card group is used to specify the types of inlets in the highway right-of-way, the hydraulic characteristics of the inlets, and related information.

Card Group 4A is used to specify the types of inlets found in the drainage area being simulated. Variables ITYPG and ITYPC are used to specify the inlet types in gutters and in channels, respectively, using the key for inlet types shown in Table IV-1. Note that only one inlet type may be used for all the inlets in gutters and one for all the inlets in channels in a single run. Three options for inlet capacity computation are available. The last two variables on this card, INOMG and INOMC, are used to select these options, (INOMG for inlets in gutters and INOMC for inlets in channels). If the user supplies inlet efficiency curves as input, then the appropriate variable should be set equal to zero. If inlet efficiency curves stored in Block Data of the program are to be used, then the variable should be set equal to one. If inlet capacity equations in the program are used, then the variable should be set equal to two. (Note that the only equations presently in the code are those for depressed curb opening inlets in gutters.)

FIGURE IV-1. Example Infiltration Curves (4)
$T A B L E I V-2$

$\begin{gathered} \text { SCS } \\ \text { Hydrologic } \\ \text { Soil Group } \end{gathered}$	$\underset{\substack{\text { Minimum } \\ \text { Infiltratio }}}{ }$ Rate, $\operatorname{WLMIN}(K)^{1}$ (in/hr)	$\begin{aligned} & \text { Maximum } \\ & \text { Infiittration } \\ & \text { Rate, WLMXX(K) } \\ & (\text { in/hr) } \end{aligned}$	$\begin{aligned} & \text { Exponential } \\ & \text { Infititration } \\ & \text { Rate Loss } \begin{array}{l} \text { OECCYY }(K) ~ \\ \text { (hour }-1) \end{array} \end{aligned}$	$\begin{aligned} & \text { Maximum } \\ & \text { Infititration } \\ & \text { DEPN(KN(K) } \\ & \text { (inches) } \end{aligned}$
A	1.00	10.0	2.0	4.3
B	0.50	8.0	2.0	3.4
c	0.25	5.0	2.0	2.3
D	0.10	3.0	2.0	1.3
$\overline{{ }_{k_{1}} \text { in Equation III-3 }}$ ${ }^{2}{ }_{k_{2}}$ in Equation III-3				
${ }^{3}{ }_{k_{3}}$ in Equation III-3				
${ }^{4}$ For bone-dry conditions, i.e., zero rainfall in the five days preceding the storm.				

When inlet efficiency curves are to be supplied for inlets in gutters, Card Group $4 B$ is used to supply these curves. Inlet efficiency is given by these curves as a function of longitudinal slope of the gutter, cross-slope of the gutter, and flow. Use of the curves is explained in Chapter III and example curves are shown in Figure III-7. Twenty-four cards are required, one efficiency curve per card, as specified in Table IV-1. Each card contains twelve values, the two coordinates of six points on each curve. The points should proceed in order from zero gutter flow to the highest gutter flow. The first point on the curve should be (1,0); if the user does not supply this point, the program will.

Card Group 4C is supplied only if the surface conveyance system includes gutters, if the inlet in the gutters is a depressed curb opening inlet, and if the capacity equations for this inlet type are to be used. The only variables required here are the apron depression width, and the inlet length.

Card Group 4D is used to supply efficiency curves for inlets in channels. Inlet efficiency is given by these curves as a function of longitudinal slope of the channel and depth of flow. Six cards are required, one efficiency curve per card, as specified in Table IV-1. Otherwise, these cards are analogous to Card Group 4B.

Card Group 4E consists of a single card used to specify the inlet capacity reduction factor, RD. The flow intercepted by each on-grade inlet will be multiplied by this factor. RD allows the user to account for inlet capacity reduction by debris clogging, etc. The value of RD should be in the range $0<\mathrm{RD} \leq 1$.

Card Group Five: Gutter/Channel Cards

The gutters or channels which make up the surface conveyance system are described with these cards; two cards are required for each gutter or channel. The conveyance system must be divided by the user into a series of gutter/channel lengths, each with constant geometric and hydraulic properties as given on these cards.

Four general types of channels can be simulated:

- Type 1: Gutters (special case of trapezoidal channel)
- Type 2: Trapezoidal Channels
- Type 3: Circular Pipes
- Type 4: Overbank Channels (double trapezoidal channels)

Card Group 5A is a single card with ten variables. The first variable is the external number used to identify the gutter/channel. (The user should identify the gutters or channels being simulated with a consecutive numbering scheme which he finds convenient.) The next four variables define the upstream and downstream stations of the gutter or channel.

Hydrogeometric properties of the gutter/channel are given by the next five variables. The bottom width of the gutter/channel is given by variable GWIDTH (N); if the cross-section is triangular (i.e., a gutter) then GWIDTH(N) equals zero. In the case of a circular pipe, $\operatorname{GWIDTH}(N)$ is used to specify the diameter. The longitudinal slope of the gutter/channel is supplied as GSLOPE (N). The next two variables define the reciprocal slopes, (horizontal/vertical) of the sides of the gutter/channel. (These are not required for circular pipes.) The first slope, GS1(N), should be the slope on the highway side. The last variable on this card is the Manning roughness coefficient of the gutter/channel.

Card Group $5 B$ is a single card used to specify the remaining characteristics of the gutter/channel. The first two variables are used to specify the drainage structure or structures downstream of the gutter/channel. If the next downstream structure is another gutter/channel section, then its external number is given as NGTO(N), the first variable on this card, and no value is given for $\operatorname{NGSTO}(N)$, the second variable on this card. If the next downstream structure is an inlet, then its external number is given as NGSTO(N) and the gutter/channel section downstream of the inlet is given as NGTO(N). If the next downstream structure is a sump inlet, then its external number is given us NGSTO(N) and no value is given for $\operatorname{NGTO}(N)$. The gutter/channel type number, as listed above, is specified by the third variable, NPG(N).

The final item required on this card is a characteristic dimension of the gutter/channel section when flowing full. If the section is a trapezoidal channel, then the channel depth when flowing full is given as DFULL(N). If the section is an overbank channel (double trapezoidal channel), then the depth of the base channel when flowing full is given as DFULL(N) (see Figure III-4). If the section is a gutter (triangular cross-section), then the flow spread corresponding to the gutter flowing full (which is controlled by the curb height) should be given as $\operatorname{SPMAX}(\mathbb{N})$. If the section is a circular pipe, then no further information need be given, since the pipe diameter given in Card Group 5A is also the depth when flowing full for this channel type.

Note that for each gutter/channel section, the 5B card must follow immediately after the corresponding 5A card.

Card Group Six: Overbank Channel Cards
Card Group Six should be supplied only if the drainage system includes overbank channels, i.e., only if one or more gutter/channel sections in Card Group Five were identified as overbank channels ($\mathrm{NPG}(\mathrm{N})=4$). If no overbank channels are included, then a single blank card should be supplied here.

Card Group Six consists of a single card used to specify the characteristics of the overbank portion of this channel type. The first variable, IDENT, is the external number of the overbank channel; this must be the same as the external number of the base channel, previously identified in Card Group Five. The remaining five variables specify the hydrogeometric characteristics of the overbank channel.

Card Group Seven: Storage Basin Cards
Card Group Seven consists of two cards used to specify the characteristics of stormwater detention basins that may be part of the surface drainage system. If no such basins are included, then two blank cards should be supplied here.

Card Group 7A is used to specify up to five variables identifying the basin. The first variable NAMEG(N) is the user-assigned external number of the basin. The next two variables, NGTO(N) and NGSTO(N), are used to identify the drainage structure or structures downstream of the basin; the use of these two variables is described under Card Group 5B. The basin outlet control type is given by the next variable, NP; NP equal to five indicates weir control, NP equal to six indicates outlet channel control. The final variable on this card, IG, identifies the number of the raingage assigned to the area in which the basin is situated; this must be in the range $1 \leq I G \leq N R G A G$, where NRGAG is given on Card Group 1C.

Card Group 7B gives the hydrogeometric characteristics of the basin. The first variable GWIDTH(N) is used to specify the outlet weir length or the outlet channel bottom width, depending on the type of outlet control. The next variable, AREALK (N), gives the surface area of the basin when full. If the outlet is a channel, then the next three variables are used to specify its longitudinal slope and the reciprocals of its side slopes. If the outlet control is a weir, then the next variable $G N(N)$ is used to specify the weir coefficient for the standard formula for flow over a sharp-crested rectangular weir (equation III-16). If the outlet control is a channel, then $\operatorname{GN}(N)$ is used to specify the Manning roughness coefficient of the outlet channel. The next two variables GLEN(N) and VOLMLK(N) give the basin length and volume, respectively. The last variable on this card, GDEPTH(N), specifies the initial depth of water in the basin, measured from the crest of the outlet weir or the bottom of the outlet channel. (The user may simulate either wet or dry detention basins.)

Card Group Eight: Watershed Cards
Characteristics of the drainage area being simulated are specified on these cards. The drainage area must be divided into a series of watersheds, each with constant hydraülic and geometric characteristics. In addition, each watershed may be divided into as many as three subareas, as explained in the discussion of surface runoff in Chapter III. Card Groups 8 A and 8 B must be provided for each watershed.

Card Group 8A contains six variables describing the watersheds being simulated. The first variable gives the external number of the watershed, selected by the user for purposes of identification. The second variable, NGTO(N), identifies the gutter/channel to which the watershed drains. Note that one or more watersheds may drain to the same gutter/channel, but a given watershed may not drain to more than one gutter/channel. The number of the raingage to be used for the watershed is given next as JK. JK corresponds to the number of the hyetograph as input in Card Group Two; the first hyetograph corresponds to JK equal to one, the second to JK equal to two, etc. If only one raingage is used, as will usually be the case, then JK must equal one for all watersheds.

The watershed area is specified by the next variable, AREA. The number of subareas in the watershed is specified next as NW3; this variable must be in the range $1 \leq N W 3 \leq 3$. The last variable on this card, WWIDTH(N), is the watershed width, as shown in Figure III-1.

Card Group $8 B$ is supplied once for each subarea; thus, there can be from one to three $8 B$ cards following each $8 A$ card. The first variable on this card, $\operatorname{WAREA}(N, K)$ is the fraction of the total watershed area in the subarea (given as a decimal). The second variable, WTYPE(N, K), identifies the infiltration type of the subarea. WTYPE (N, K) set equal to zero denotes impervious areas; WTYPE (N, K) set equal to an integer from one to four corresponds to the infiltration curves input as Card Group 3B. The average slope of the subarea, $\operatorname{WSLOPE}(N, K)$, is given next. The average depression storage depth for the subarea is supplied as WSTORE(N,K). Typical values of depression storage have been found to be on the order of 0.05 inches for impervious areas and 0.2 inches for pervious areas (3). The final value on this card is the Manning roughness coefficient for the subarea. Typical values of this coefficient for overland flow are shown in Table IV-3.

Card Group Nine: Runoff Quality Cards
Card Group Nine consists of a single card used to provide runoff quality information. If runoff quality is not to be simulated, then the first variable NQS should be set equal to zero and no further information need be supplied on this card.

TABLE IV-3
TYPICAL VALUES FOR MANNING COEFFICIENT FOR OVERLAND FLOW (6)

Groundcover	Manning's n for Overland flow
Smooth asphalt	0.012
Asphalt or concrete paving	0.014
Packed clay	0.030
Light turf	0.200
Dense turf	0.350
Dense shrubbery and	
forest litter	0.400

If runoff quality is to be simulated, then NQS should be set equal to an integer from one to thirteen, corresponding to the list of thirteen water quality parameters given in Table IV-1. The program will then simulate the first NQS parameters in the list. With the next three variables, the user should supply the number of dry days since the last significant storm, DRYDAY, which can be obtained from the Path 3 computation in the Precipitation Module, the frequency of maintenance such as street-sweeping, CLFREQ, and the efficiency of the maintenance, REFF ($0<R E F F<1$). If any storage basins are included in the simulation, then a value should be given for the last variable on this card, DET. This variable defines the detention time required for 50% removal of suspended solids in the storage basins.

All assumptions with regards to simulation of runoff quality are explained in Chapter III. If the user has site-specific runoff quality information that he would like to use, he should refer to Chapter III for guidance.

Card Group Ten: Output Control Cards
Card Group Ten is used to select several options related to program output. The first variable on Card Group 10A, NPRNT, is used to specify the total number of gutters, channels, and inlets for which hydrographs and pollutographs (if quality was simulated) are to be printed. The number of time-steps between output values should be specified by the second variable on this card, INTERV. If NPRNT equals zero, then no value need be supplied for INTERV and Card Group 10B may be skipped.

Card Group 10B is used to list the external numbers of the NPRNT gutters, inlets, and channels for which output is requested. As many cards as are required may be used, 16 values per card. (Note that each card should be filled with 16 values before a subsequent card is started.)

The only variable on Card Group 10C, NPLOT, is the total number of gutters, channels, and inlets for which hydrographs and pollutographs (if quality was simulated) are to be plotted. If NPLOT equals zero, Card Groups 10D and 10E should be skipped.

Card Group 10D is used to list the external numbers of the NPLOT gutters, channels, and inlets for which plots are to be produced. Card Group 10E is used to list the parameters to be plotted. As shown in Table IV-1, a zero placed in the appropriate column means do not plot the parameter; a one in the appropriate column means plot the parameter.

PROGRAM DESCRIPTION

General Structure

Program SRO is structured into 17 computational units--Main Program SRO, BLOCK DATA, Subroutine CURVE, Subroutine GQUAL, Subroutine GRAPH, Subroutine GUTTER, Subroutine HCURVE, Subroutine HYDRO, Subroutine OVRBNK, Subroutine PINE, Subroutine PPLOT, Subroutine QSHEDI, Subroutine RECAP, Subroutine RHYDRO, Subroutine WSHED, Subroutine CARRY, and Subroutine SUMSTAT. The interrelationship among these units is illustrated in Figure IV-2. The Main Program SRO controls the computational sequence. The primary function of each routine is as follows:

- BLOCK DATA - Initializes variables prior to execution
- Subroutines CURVE, PINE, and PPLOT - Perform graphical functions
- Subroutine GRAPH - Sets up information for hydrograph and pollutograph plots
- Subroutine HCURVE - Sets up information for hyetograph and total outflow plots
- Subroutine GQUAL - Performs gutter/channel quality routing
- Subroutine GUTTER - Performs gutter/channel hydraulic routing
- Subroutine HYDRO - Controls time sequencing of quantity and quality calculations
- Subroutine OVRBNK - Performs hydraulic computations for overbank channels
- Subroutine QSHEDI - Performs pollutant buildup and washoff computations by subarea
- Subroutine RECAP - Outputs detailed simulation results
- Subroutine RHYDRO - Reads input data
- Subroutine WSHED - Computes watershed subarea flows
- Subroutine CARRY - Computes inlet interception and carryover
- Subroutine SUMSTAT - Outputs simulation results in summary format.

FIGURE IV-2. Program SR0 General Structure

The main program and each of these routines is discussed in turn below. A complete definition of all common block variables is given at the end of the section.

Main Program SRO

The following routines are called from the main program:

- HYDRO
- RECAP

Common Block TAPES is the only common block employed in the main program, which is presented in flowchart form in Figure IV-3. After tape assignments have been made, Subroutine HYDRO is called to perform the computations. Subroutine RECAP is then called to print the detailed simulation results on a gutter/channel basis. There are no key variables not contained in common; a listing of the main program follows.

Block Data
This routine is used to initialize key variables in common blocks SLOPES, LAB, ABLK, and CON. For each of the five land surface types, the ulitmate load in lbs/acre, the half saturation constant in days and the pollutant ratios to suspended solids are defined. Also given are axes labeling information.

The user who wishes to calibrate the runoff quality portion of the model with site-specific data must do so by modifying the values of the variables initialized in BLOCK DATA. The relevant variables for each land surface type are the ultimate suspended solids load, $S S U_{L}$, the time to reach half the ultimate suspended solids load, $\operatorname{HAFSAT}_{L}$, and the ratio of each pollutant to suspended solids, $F_{L d}$, all of which are defined in Chapter IV. The values presently in BLOCK DATA were obtained from a study in the Detroit, Michigan area (3).

FIGURE IV-3. Flowchart for Program SRO

```
page
01/29/81 09.15.19
M N
```

Reproduced from
best available copy.

The ultimate suspended solids load and the half-saturation constants in array SSFACT $(5,2)$ are initialized by a DATA statement. The ratio of each pollutant mass to suspended solids mass for each land type are contained in array QFACT $(5,13)$ and are also initialized by a data statement.

A listing of BLOCK DATA follows.

Subroutine GRAPH
Subroutine CURVE is called from this routine to control the graphical functions. The following common blocks are contained in Subroutine GRAPH:

- BLANK COMMON
- TAPES
- LAB

The graphing subroutines enable hydrographs and pollutographs to be plotted on the printer for selected locations on the data file. GRAPH is the driving subroutine, and it calls CURVE to produce the actual page of plotted output. The flow sequence is presented in flowchart form in Figure IV-4. The logic sequence is essentially as follows:

1. Information is read from the data file indicating the structure of that file;
2. All hydrograph and pollutograph information is read from the data file; and
3. For each type of hydrograph and pollutograph, individual curves are selected, transferred into plotting arrays, and output in a final plotted form by Subroutine CURVE.

There are no key variables not contained in common. The computer listing of this routine follows.

Subroutine HCURVE
Subroutine CURVE is called by HCURVE to produce the plotted results. The following common blocks are employed in Subroutine HCURVE:

- BLANK COMMON
- LAB

```
PAGE 1
#
FIN 4.8+51B
74/750 OPT=1
BLOCK DATA BLKDAT.
```



```
OLTA GFACT/
C***** }\mp@subsup{}{6}{CL}2*0.0,3*0.0
C**** NH3
C**** 8 5*O.0,
C**** NOS N 2*1.7.3*6.4,
C****TCT P
C**** O+
Clloll
```


$\stackrel{\text { u }}{\stackrel{\rightharpoonup}{a}}$
9
\vdots
\vdots
\vdots
01/29/81
FTN 4.e.t518
$\overrightarrow{i 1}$
$\stackrel{2}{0}$
0
741750

O	$\stackrel{\sim}{6}$	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\sim}$	-	∞

FIGURE IV-4. Flowchart for Subroutine GRAPH
Hdyyo 3NIMOygns
 TITL(14) $=$ TITL14 $\operatorname{TIT}(15)=T \operatorname{ITL15}$
$\operatorname{TITL}(16)=T \operatorname{ITL16}$
$\operatorname{TITL}(17)=T I T L 17$
$\operatorname{TITL}(18)=T I T L 18$ NTAPE =JOUT(3)
IF (NTAPE.LT.1) RETUPN
REWIND NTAPE

NGP $=$ NGUAL+1
NGT $=N Q P$.
$I F\left(N G T_{\&} E G .1\right) \quad N G T=2$
$M S T=(N S T E P S-1) / 101+1$

APH (IC)

 (NTAPE)
$N G T=N Q P$
$I F(N G T \bullet E G \cdot 1) \quad N Q T=2$
$M S T=(N S T E P S-1) / 101+1$
MST $=($ NSTEPS-1)/101 1

REWIND NTAFE

READ (NTAPE)
$\mathrm{MLOC}=0$
$D 020 \mathrm{~N}=1, \mathrm{NSTEPS}$
 IF (MOD(N-1+MST,MST).NE.O) GO TO 20
$M L O C=M L O C+1$
$M L O C=M L O C$
$D O 10 M=1$,
DO $10 M=1, N Q P$
$Y T(M L O C, M)=Y S(J, M)$
CONTINUE
$X(M L O C, 1)=T I M E / 3600$.
CONTINUE
$-$
$\stackrel{\circ}{\sim}$
n

subrcutine		GRAPH	$74 / 750$ OPT $=1$
			NPT(1) = VLOC
			DO $50 \mathrm{~N}=1,25$
60			IF(IC(N).EQ.0) 60 TO 50
			D0 $301=3,7$
		30 T	TITL(I) $=\operatorname{CONST}(1-2, N)$
			IT=3
			IF (N.LG.1) IT=2
65			IF (N.EQ.5) IT ${ }^{\text {a }}$
			DO $4 \mathrm{C} M=1, \mathrm{MLO}$
		40.9	$Y(M, 1)=r \mid(N, N)$
			CALL CURVE(X,Y,NPT,NCV, HLOC (J))
		5: co	continue
70		63 Con	continue
			RETURA

HCURVE arranges rainfall hyetograph data or the total inlet inflow data for subsequent processing by Subroutine CURVE. The logic sequence is presented in Figure IV-5 in flowchart form, followed by the computer listing.

Subroutines CURVE, PINE AND PPLOT
These routines form a standard plot package and will be considered here as one computational unit. Subroutine CURVE is called to enter the plot package and employs common block LAB to define axis labeling information. Subroutine PPLOT also employs common block LAB while PPLOT contains no common block. Each routine is disussed in turn below.

Subroutine CURVE
The Subroutine CURVE performs the following operations:

1. Determines maximum and minimum of arrays to be plotted;
2. Calculates the range of values and selects appropriate scale intervals;
3. Computes vertical axis labels based upon the calculated scales;
4. Computes horizontal axis labels based upon the calculated scales;
5. Joins individual parts of the curve by Subroutine PINE; and
6. Outputs final plot.

Subroutine PINE
This subroutine joins two coordinate locations with appropriate characters in the output image array A of PPLOT.

Subroutine PPLOT
This subroutine initializes the plotting array, stores individual locations, and outputs the final image array A for the printer plot.

FIGURE IV-5. Flowchart for Subroutine HCURVE

NNN
\cdots
$\because \quad n$
ㅇ
$\stackrel{\AA}{\sim}$
n
앙
$\stackrel{n}{\&}$
in
琞

C****	CONVERT RAINFALL FROM FT/SEC TO MM/HR $Y(N, K)=R A I N(L, I)=0.304 E * 3600000$. GO YO 36
C ${ }^{\text {a }}$	
C****	CONVERT RAINFALL FROM FT/SEC TO IN/HR
35	Y(N,K) =RAIN(L, I)*43200.
36	TIME = TIME+HISTOG
	IF(timegat.tmax) GO TO 59
	IF(NHISTO.GT.jO) 60 to 40
	$\mathrm{N}=\mathrm{N}+1$
	$x(N, K)=$ TIME/3600.
	IFIIMET.EQ.J) 60 TO 37
C COMVEPT PAIVFaLL FROM	
C****	CONVERT PAINFALL from fi/sec to mm/hr
	$Y(N, K)=R A I N(L, I) * 0.3048 * 3600000$.
	GO TO 40
C	
C****	CONVERT RAINFALL FROM FT/SEC TO IN/hr
37	Y(N,K)=RAIN(L,I)*43200.
40	CONTINUE
	$\mathrm{N}=\mathrm{N}+1$
	$x(N, K)=$ TMAX/3600.
	$Y(N, K)=0$.
50	WPT(K) $=\mathrm{N}$
	$K=N G A G P+1$
60	$\mathrm{K}=\mathrm{k}-1$
	CALL CURVE (X.Y.NPT,K.INLET)
8 \%	continue
	RETURN
	END

The key variables in each routine not in common are presented in Table IV-4. The computer listing for these routines follows.

Subroutine GQUAL
GQUAL computes a mass balance for each gutter/channel at each time step. The routine is called from GUTTER and returns the concentration of conservative constituents in the gutter/channe1. Mass inputs include upstream gutters and channels, tributary watersheds, and inlet carryover. This quality routing routine also handles surcharge quality. It does not contain any provision for decay of non-conservative constituents. Suspended solids removal in detention basins is also computed in this routine. The following common blocks are employed in this routine:

- BLANK COMMON
- ABLK
- NEW
- POLUT
- INFIL
- REMOV
- TEST

The computational sequence is shown in flowchart form in Figure IV-6. Key variables not in common are presented in Table IV-5, followed by a listing of this subroutine.

Subroutine GUTTER
Subroutine GUTTER calls Subroutine GQUAL and Subroutine CARRY. The following common blocks are employed in GUTTER:

- BLANK COMMON
- TAPES
- ABLK
- NEW
- MAX

Variable Name	Description
	SUBROUTINE CURVE
A	The log base 10 of the range of values of y coordinate to be plotted
FRANG	Expanded range (even intervals) of y coordinates of curve to be plotted
K	Subscript counter
L	Subscript counter
M	Subscript counter
N	Subscript counter
NCV	Number of curves/plot
NPLOT	Number of plots
NPOINT	Number of points on a plot
NPT	Number of points/curve (array)
NPTM	Numerical value of NPT
RANGE	Range of y values to be plotted
X	X coordinate array
XINT	Label interval for X
XMAX	Maximum X value
XMIN	Minimum X value
XO	Start point of line (X coordinate)
XSCAL	X scale factor
XT	End point of line (X coordinate)
M	Subscript counter
MC	Do loop counter
MM	Subscript counter
N	Subscript counter
NCURVE	Number of curves to be plotted

TABLE IV-4 (cont.)

Variable Name	Description	Unit
NCV	Number of curves/plot	
NLOC	Node number of hydrograph point	
NLP	Number of types of plot (hydrographs and pollutographs)	
NN	Subscript counter	
NPCV	Maximum number of curves/plot	
NPLOT	Number of plots	
NPT	Array containing number of points to be plotted (GRAPH)	
NQP	Number of quality constituents to be plotted	
NQUAL	Number of quality constituents on data file	
NR	Subscript counter	
NSTEPS	Number of steps in plot	
NTAPE	Input tape number for plotting	
NVAL	Number of points/data record on a file	
TAREA	Total area	Acres
TDELT	Time-step interval	
TIMES	Time-step interval	
TZERO	Zero time	
X	X coordinate array (GRAPH)	
Y	Y coordinates of curves to be drawn	
YT	Hydrograph-pollutograph information on data file	
	SUBROUTINE PINE	
AXA	X coordinate of value previously plotted	
AXG	X coordinate of value to be plotted	
AYA	Y coordinate of value previously plotted	

TABLE IV-4
 (cont.)

Variable Name	Description
AYB	Y coordinate of value to be plotted
IXA	Integer value of AXA
IXB	Integer value of AXB
IYA	Integer value of AYA
IYB	Integer value of AYB
N	Subscript counter
NCT	Number of plots
NSYM	Plot number
XA	X increment used for interpolation
X1	Same as X0
X2	Same as XT
YA	Y increment used for interpolation
YI	Same as YO
Y2	Same as YT

SUBROUTINE PPLOT

A Transfer array for plotting
Subscript counter
Subscript counter
IX
Start point of line
IY
J
JJ
NCT
SYM

Start point of line

Subscript counter
Subscript counter
Number of plots
Plot symbol array

\cdots


```
PAGE
09.16.19
01/29/81
FIN 4.8*518
```


subrcutine	pine	74/750	0 OPT $=1$
55		$\mathrm{N}=\mathrm{N}+1$	
	90	IF $1 \times A Y A-I Y B)$ I	
	100	$\begin{aligned} & \text { GOTO } 70 \\ & \text { RETURN } \\ & \text { END } \end{aligned}$	

```
-
fage
01/29/81 09.16.19


```

WRITE<N6,150) VERTR5,IT)
I．NE．24）GJ TO 40 1）

```

``` 0 TI．NE． 26 ）GO TO 50
RITE（NG．140）VERT 3.
WRITE（NG．140）VERT（3，IT），VERT（4，IT），（A（I，J），\(J=1,101)\)
No
\(\sim\)
\(\sim\)
\(\sim\)
－익
\(\stackrel{\sim}{\sim}\) \(\square\)
```



```
웅ㅇㅇㅇㅇㅇㅇ
岂岂灾
```



```
9
n
웅
\(\stackrel{n}{n}\)
m
n

！
요
10
```



FIGURE I甘6, Flowchart for Subroutine GQUAL

TABLE IV-5
KEY VARIABLES NOT IN COMMON FOR SUBROUTINE GQUAL

Fortran   Variable	Description	Units
ALFA	Auxiliary variable	$\mathrm{sec}^{-1}$
BETA	Auxiliary variable	$\mathrm{gm} / \mathrm{l} / \mathrm{sec}$
DT	Detention time	sec
$J$	Channel number (internal)	-
PREM	Surcharge mass flux	$\mathrm{gm} / \mathrm{sec}$
QT	Channel flow plus surcharge rate	$\mathrm{ft}^{3} / \mathrm{sec}$
RR	Suspended solids removal fraction	-
STORPL(13,5)	Surcharge mass in channel for each	
	Suspended solid type	$\mathrm{gm}^{2}$
TEMP	Auxiliary variable	$\mathrm{sec}^{2} / \mathrm{ft}^{3}$
V	Channel volume	$\mathrm{ft}^{3}$
VDOT	Time derivative of channel volume	$\mathrm{ft}^{3} / \mathrm{sec}$

C＊＊＊＊＊＊＊THIS SUEROUTINE ROUTES CUALITY IN GUTTER J FOF THE FLCW VALUES
 1 TIME，TIME 2，RI FFLOSS，TZERO，SUNR，SUMI，SUMOFF，SUNST，NING ：MET 2WDEFTH（200，3），WAKEA（2OC，3），WCON（2UO，3），WAMEW（2OO），WLMAX（ 5 ）

CCMMON GFLON（155），GWIDTH（15C），GLEN（150），GSLOPE（150：，GS18150）．
$2 G S 2(150) . G N(150), G D E P T H(15 C), G C O N(150), ~ D F U L L(150), S U M Q W(150)$.
$3 N G U T(200), F C T Z E R, N P E(150), S P M A X(150)$ 3NGUT（200），FCTZER，NPE（150），SPMAX（150）

COMMON NHTOG（200，10），NGTOG（200，10）．NWTOI（10），NGTOI（2OO）
SUAROUTINE GQUAL（J．V．TMSUR）
$C$
$C$
$C$
COMMON IPRNT（150），ISAVE（150），NPRNT，NSAVE，OUTFL
$2 I N T C N T, T I T L E(40), I P L O T(150), I C O O E(150), N P L O T$
COMNON／TAPES／JIN（1），JOUT（3），N5，NG
COMMON／INFIL／RAININ（200．3），DEPIN（ 5 ），TIMEW（200），WTYPE（200．3）．
2NC（200）
COMMON／POLUT／WFLO（20O，3），WDOT（200，3，5），W（200，3，5）
COMMON／AGLK／NES，CLFREG．DRYOAY，REFF，NOO．PLAND（200，3） SYEG（150），NGTO（200），BASFLO（3）．DNDT（3），AEAR（3）


IF（QIN（J）．GT．0．005．OR．GFLOW（J）．GT．0．005）GO TO 20 OO $10 K=1.5$
$\operatorname{CDOT}(J, K)=0.0$
$C(J, K)=0.0$
CONTINUE
RETURN
$\square$
CONTINU
$C * * * * * * * *$ COMPUTE INPUTS FROM UPSTREAM．GUTTERS
ALFA $=2 \cdot 0 / D E L T$
$F L U X(M)=C$.
IF（TUSUR．GE． 0$)$ GO TO 30
IF（TUSUR•GE•O）GO TO 30
PREM $=-T M S U R * S T O R P L(J, M) /(Q S U R(J)-T M S U R * D E L T)$
$F L U X(M)=F L U X(M)+P R E M$


$\square$
$M$
$m$
$n$
$N$
9
$\stackrel{0}{8}$
in
n
$\sim$
PAGE

$$
\begin{array}{r}
(N+(7) J N+7) M=(7) M O T\lrcorner M+(h) \times \cap \neg\lrcorner=(W) \times \cap 7 \pm \\
G \bullet I=W 0 Z T \text { 00 }
\end{array}
$$

$$
\text { art } 0109(0 \cdot 03 \cdot 0137 N 1) \rightarrow 1
$$

$$
\begin{aligned}
& \text { IF(J.NE.ISAVE(IN)) GO TO } 100 \\
& \text { DO } 90 M=1.13
\end{aligned}
$$

$$
\begin{aligned}
& 00100 \text { IN=1•INLET2 } \\
& \text { IF(J.NE.ISAVE(IN)) GO TO } 100
\end{aligned}
$$

$$
\begin{aligned}
& D 090 M=1 * 13 \\
& F L U X(M)=F L U X(M)+P I N L E T(I N, M)
\end{aligned}
$$

$$
\begin{array}{ll}
100 & \text { CONTINUE } \\
110 & \text { CONTINUE }
\end{array}
$$

$$
C * * * * * * * \text { ADO MASS INPUT FROM ADSACENT WATERSHEDS }
$$

$$
\begin{aligned}
& L=N W Y O G(J, K) \\
& I F(L . E G . O) \text { GO TO } 140
\end{aligned}
$$

$$
\text { IF (NPG(J).EO.10) GO TO } 160
$$

$$
\begin{aligned}
& \text { IF(NPG(J)•NE•4•AND.NPG(J)•NE.5) GO TO } 175 \\
& R R=1 \oplus \\
& I F(G F L O W(J) \cdot L E \cdot O,) G O T O 180
\end{aligned}
$$

$$
\begin{aligned}
& R R=O T /(D T+D E T) \\
& D O 185 M=1,5
\end{aligned}
$$

$$
\begin{aligned}
& D T=V O L 2(J) / G F L O W(J) * 60 \\
& R R=D T /(D T+D E T)
\end{aligned}
$$

${ }_{\infty}^{\infty}$
$C * * * * * * *$ COMPUTE CURRENT VALUES OF GUTTER PARAMETERS FOR ROUTING
$85 \quad F L U X(M)=F L \cup X(M) *(1 .-R R)$

$$
\mathrm{C}
$$

DC $150 \quad K=1,5$
EETA $=A L F A * C$
$C * * * * * * * ~ C O M P U T E ~ F I N A L ~ C O N C E N T R A T I O N ~ A N D ~ U P D A T E ~ T I M E ~ P A R A M E T E R S ~$

$$
175
$$ 175 VOOT=QIN(J)-GFLOW(J)-TMSUR

IF (TMSUR.GT.OD OT=ET + TMSUR
$T E M P=1 . /(V D J T+A L F A * V+Q T)$


$$
\begin{aligned}
& D C 150 \\
& \text { EETA } A L F A * C(J, K)+C D O T(U, K) \\
& C(J, K)=T E M P *(F L U X(K)+V * E E T A) \\
& C D O T(J, K)=A L F A * C(J * K)-B E T A \\
& I F(T N S U R . G T \& O) \quad S T C R P L(J, K)=S T O R P L(J \& K)+T M S U R * C(J, K) * D E L T
\end{aligned}
$$


SUMT1 =SUMT1 $1+W F L O W(L) * W(L * N C(L), M) * D E L T *-0283$
CONTINUE


The function of Subroutine GUTTER is very similar to that of WSHED; it calculates a complete set of water depths and flows for gutters and channels and calls GQUAL to route conservative pollutants. If an inlet is encountered, CARRY is called to compute the carryover to the downstream gutter/channel.

The computation proceeds one gutter/channel at a time. For a gutter/ channel, first the inflows are summed, then Newton's iterative procedure is used to determine the depth and outflow based on continuity and uniform flow equations. Individual calculations are made for trapezoidal gutters and channels, pipes, and overbank channels (by calling OVRBNK). Detention basin outflows are determined from a weir equation or the uniform flow equation for an outlet channe1. If the gutter/channel becomes filled and surcharge occurs or if an overbank channel begins to flow, a message is printed. Inlet hydraulic and quality information is written to tape or disc for later access by the drainage design program. Hydrographs and pollutographs are written to an output file. The computational sequence is shown in the flowchart of Figure IV-7. Key variables not included in common are presented in Table IV-6 followed by a listing of the subroutine.

## Subroutine OVRBNK

When a channel has been input as a double trapezoidal channel and the base channel overflows, OVRBNK is called to route the flows in the overbank channel. The structure of this subroutine is virtually identical with the portion of GUTTER that calculates flow from trapezoidal channels. The inflow to the overbank channel is the overflow from the base channel and again Newton's method is used to compute depth and outflow. The overbank channel outflow is added to the full flow of the base channel computed in GUTTER to arrive at the total outflow.


FIGURE IV-7. Flowchart for Subroutine GUTTER


Figure IV-7
(Continued)

TABLE IV-6
KEY VARIABLES NOT IN COMMON FOR SUBROUTINE GUTTER

Fortran Variable	Description	Units
AR23	Detention basin flow calculation auxiliary variable	$\mathrm{ft}^{8 / 3}$
AX	Detention basin flow area	$\mathrm{ft}^{2}$
AX $\emptyset$	Channel flow area at start of time step	$\mathrm{ft}^{2}$
AXI	Channel flow area at end of time step	$f t^{2}$
DAXI	Derivative of flow area with respect to depth change	ft
DDELV	Derivative of flow volume with respect to depth change	$f t^{2}$
DEL	Change in depth	ft
DELV	Channel in volume has a function depth change	$f t^{3}$
DEPTH	Depth of flow at inlet	ft
DF	Derivative of Newton-Raphson F function	$f t^{2}$
DFLOW1	Derivative of flow at end of time step with respect to depth change	$\mathrm{cfs} / \mathrm{ft}$
DO	Detention basin depth at the beginning of the time. step	ft
DWP1	Derivative of wetted perimeter with respect to depth change	$\mathrm{ft} / \mathrm{ft}$
$D \varnothing$	Channel depth at beginning of the time step	ft
D1	Channel depth at end of the time step	$f t$
F	Newton-Raphson $F$ function	$\mathrm{ft}^{3}$
FLOW	Average flow during the time step length	$\mathrm{ft}^{3}$
FLOWø	Flow at depth at beginning of the time step	$\mathrm{ft}^{3}$
FLOW1	Flow at depth at end of the time step	$f t^{3}$
FLOW1】	Flow at depth at beginning of the previous time step	$f t^{3}$
IFLG	Surcharge indicator	-


Fortran Variable	Description	Units
IND	Rainfall array pointer	-
INLETS	Number of inlets	-
NGAG	Raingage number	-
NOGG	Number of channels and inlet channels	-
NOUT	Plot tape number	-
NPGJ	Channel type	-
NSUR	Number of surcharged channels	-
NTIMEH	Time in hours	hrs
NTS2	Transfer tape number	-
NT1	Print tape number	-
NUP	Channel number above inlet (internal)	-
NX	Contributary watershed number (internal)	-
OVRAXø	Overbank flow area at beginning of time step	$f t^{2}$
OVRAXI	Overbank flow area at end of time step	$\mathrm{ft}^{2}$
OVRDEL	Overbank channel change in depth	ft
OVROUT	Overbank channel outflow	$\mathrm{ft}^{3} / \mathrm{sec}$
OVRQIN	Overbank channel inflow	$\mathrm{ft}^{3} / \mathrm{sec}$
RAD1	Hydraulic radius at end of the time step	ft
TIMEM	Time in minutes	min
TMSUR	Surcharge volume rate	$\mathrm{ft}^{3} / \mathrm{sec}$
VOL	Channel volume	$f t^{3}$
VOLø	Volume at the beginning of the time step	$f t^{3}$
WP	Wetted perimeter as a function of depth change	ft
WPD	Wetted perimeter at depth at beginning of the time step	ft
WP1	Wetted perimeter at depth at end of the time step	ft







$n$	0	in	0	18	0	ก	0	15	0
$N$	$\infty$	$\infty$	0	0	-	$\bigcirc$	-1	$\cdots$	N
-	$\cdots$	$\cdots$	-	-	N	N	N	N	$\sim$


$G F \operatorname{LOW}(J)=G \operatorname{con}(J) * A R 23$

	GFLOW (J) $=\operatorname{GCON}(J) * A R 23$
$\begin{aligned} & C * \\ & 300 \end{aligned}$	CHANGE IN LAKE STORAGE
	NGAG = LKHYET (J)
	RI=0.
	IF(TIME2.LE.TFAIN) RI=RAIN(IND.NGAG)
	DELD (J) = (RI+(כIN(J)-GFLOW (J))/AREALK(J))*DELT
	GDEPTH(J)=GDEPTH(J) + DELD(J)
	$V O L=V O L M L K(J)+(G D E P T H(J)-D E L D(J) / 2) * A R E A L K.(J)$
	IF(TIME.GT•TZERO+DELT) GO TO 310
	$V O L 1(J)=(G D E P T H(J)-D E L C(J)) * A R E A L K(J)$
310	VOL2 (J) = GDEPTH(J)*AREALK(J)
	VOLPLK(J) =VOL2(J)
C**	SUM FOR CONTINUITY CHECK
	SUMRL = SUMRL + RI*AREALK (J)*DELT
	TMSUR $=0$.
	OUTFLW(J)=GFLOW(J)
	IF(OUTFLW(J).EQ-0) OUTFLW(J) =0.0011
	GO TO 330

$C$
$C * * * * * * * *$ COMPUTE IVTEPCEPTION AND CARRYOVER FOR INLETS
$C$
$325 \quad$ NUP $=N G T O G(J, 1)$
325 NUP=NGTOG(J,1)
CALL CAPRY(DEPTH,ISUMP,NUP, XFLOW(J),GFLOH(J))
0
m
10
1
1
\&
10
F(OW(J)=QIN(J)
(NQS.GT.O) CALL GQUAL (J,VOL.TMSUR)
$C * * * E N D ~ O F ~ D O ~ L O O P ~ O N ~ G U T T E R S ~$
$340 \quad$ CONTINUE
CONIINUE
NTIMEH=TIME/3500.
TIMEM $=$ TIME/60.-FLOAT (NTIMEH)*60.
DO $1500 \mathrm{~N}=1$, NOG
IF
$M A X L O W(N) . L E . M A X F L W(N)) G O T O 1500$
$M A X F L W(N)=G F L O W(N)$
$M A X H R(N)=N T I M E H$
MAXMIN(N) $=$ TIMEM+. 5
$A \times D E P(N)=G D E P T H(N)$
500 CONTINUE
$C * * * * * * * * P R I N T ~ T A P E ~$
$C$
NQT=NGS
IF(NGT-LT.1) NQT=I
IF(NPRNT.LT.1) GO TO 480
IF (NTCNT =INTCNT +1
IF
IF (INTCNT.LT.INTERV) GO TO 480
INTCNT=9
DO $380 \mathrm{~N}=$
DO $380 \quad N=1$, VPRNT
$\mathrm{J}=\mathrm{I} P R \mathrm{NT}(\mathrm{N})$
OUTFLW(N)=GFLOW(J)
IF (NPG(J).EQ.9) OUTFLW(N)=XFLOW(J)
CONTINUE
WRITE
$\infty$
$\infty$
$m$
$\begin{array}{ll}0 & \text { n } \\ 0 & \text { n } \\ \mathbf{N} & \text { N }\end{array}$
0
0
$M$
10
0
0
$o$
$\boldsymbol{m}$
$n$
$\cdots$
$N$
O
N
N
$n$
$N$
$N$
0
$m$
$m$
$n$
$m$
$m$
0
$m$
$m$



The following common blocks are employed:

- BLANK COMMON
- NEW

The structure of the routine is shown in the flowchart of Figure IV-8. Key variables not in common are a subset of those presented in Table IV-6. The computer listing follows.

Subroutine HYDRO
As shown in Figure IV-2, HYDRO links most of the subroutines in the runoff program and calls them sequentially to execute a complete runoff simulation. It initializes certain variables to zero before calling RHYDRO to read in the control, rainfall, watershed subarea, land use, gutter/channel, and quality data. A call to QSHED1 initializes suspended solids loadings in the watershed subareas.

A DO-loop is formed to compute the hydrograph coordinate and concentration for each gutter/channel and for each time step. In each time step, subroutine WSHED is first called to calculate the flow and quality of water off the watershed subareas. GUTTER is then called to route the flow and conservative constituents through the gutters and channels and into the inlets. Inlet inflow and the pollutant influx is stored on a tape or disc file for subsequent access by the drainage design program DRAIN.

During the process of computation, an accounting is made for the quantity of all water entering and leaving each watershed subarea and the disposition of water currently in the watershed. A continuity balance is then performed and printed. The pollutant mass washed off each watershed subarea is also printed for reference.

Finally, the rainfall hyetograph, the sum of all inlet hydrographs, and desired gutter/channel outflow hydrographs and concentration-time curves are plotted by calling HCURVE and GRAPH. Subroutine SUMSTAT is


FIGURE IV-8. Flowchart of Subroutine OVRBNK

[^0]c
c $* * * * * *$ ThIS SUBROUTINE COMPUTES THE INSTANTANEOUS HATER DEPTH AND
c*******LOW RATE FOR TRAPEZOIDAL OVERBANK GUTTERS
c
 COMMON WFLOW(200), WWIDTH(200), WLLOPE(200,3), WSTORE(200.3), 3 WLMIN 5 ), DECAY( 5 ), PPCIMP (200)
 ЗNGUY(200), PCTLER, NPG (150), SFMAX(150)

COMMON DELD(150),0IN(150), OSUR(150)
COMMON NWTOG(200,10),NGTOG(200,10),NHTOII 10),NGTOI(200)

 COMMON/TAPES/JIN(1), JOUT(3),N5,N6
 JUP $=$ JOVER (
DOOVRD
 OVRAX $=0$.
OURAX $=0$. OVRAX1 $=0$.
O

$$
\begin{aligned}
& \text { FLOM1 }=0.01,30 \\
& 0070=10
\end{aligned}
$$

$\stackrel{-}{-}$
$C * * * * * * * *$ COMPUTE CHANGE IN DEPTH
$C$
c**** estimated final depth
DI=OVRDEP (JJF) +0 .
IF(D1.LT.0)

[^1]

c DAX1=(OVRGS1(JUP)+OVRGS2(JUP))*D1*OVRWTH(JUP)


$*$
$*$
$*$
$*$

$\begin{array}{ll}C * * * * & \text { VOLUME CHANGE } \\ & \text { DELV=GLEN(J)*OVRDEL* ( (QVRGSI (JUP) +OVRGS2(JUP)) * (DO*O. } 5 * O V R O E L)+O V R\end{array}$
*
$n$
$n$
$\stackrel{15}{\sim}$
$N$ page
$01 / 29181 \quad 09.16 .19$

		IUP)-TWIOTH(J)   CWP1 $=$ SGRT(CVRGS1 (JUP) **2+1.) + SORT(OVRGS2(JUF)**2*1.)
60	$c$	
	C****	hydraulic radius
		If (OVRAXO.LT-0) OVRAXO $=0$.
		If (OVRAXIELT.0) OVRAXI=0.
		IF(WPD.LE.O) WPD $=0.001$
65		$I F(W P 1 . L E .0) W P 1=0.001$
		RAD1 $=$ OVPAX1/WP1
	c	
	C****	FLOW
70		FLOW1 $=$ OVRCON(JUP)*(OVRAX1**1.6666667)/(WF1** (.6666667)
		FLOW $=0.5 *(F L O W 0+F$ LOW1)
		DFLOW1 $=0.5 *$ VVRCON(JUP)*(1.66666667*(RAD1**0.6666667)*DAX1-0.666666
		17*(RAD1**1.6666667)*DWP1)
	c	
75	C****	newton-raphsov correction
		$F=D E L V+$ OELT*(FLOW-OVRGIN)
		$D F=D D E L V+D E L T * D F L O W 1$
		IF(DF.GT.0) G0 TO 20
	c	
80	C****	zero Slope
		$D E L=0.01$
		GO TO 30
	c	
	C****	NON-ZERO SLOPE
85	20	DEL=OVRDEL-F/DF
	c	
	C****	CONVERGENCE CHECK (INDIVIDUAL GUTTER)
	30	IFII.EQ.1) GO TO 70
		IF (OVRDEP (JUP) + EEL.LT.OVRDFL(JUP)) 60 T0 50
50		HPITE (N6,4G) VAMEG(J)
	40	FOFMAT(*0*,*WARNING - OVERBANK GUTTER*.IG** IS SURCHARGING*)
	50	IF(FLOW1C.GT-0.001) 60 T0 60
		IFAASS(FLOW1-FLOH10).LT.C.001) 60 TO 90
		GO TO 70 ( ${ }^{\text {a }}$
95	60	continue
		IF (AES (FLOW1-FLOW10).LT.0.001*FLOW1) 60 TO 90
	70	OVRDEL = DEL
		WRITE(NE,80) TIME, J, OVRDEP(JUP), OVREEL
	80	FORMAT * CHECK RESULTS. NCT CONVERGED IN OURENK*,F8.0,16,2E12.58
100		CVROUT=OVRGIN
		DEL $=0.01 *$ OVRDFL (JUP)-OVRDEP (JUP)
	c	
	C****	new depth at end of time interval
	90	OVRDEL=DEL
105		OVRDEP(JUP) $=$ OVRDEP (JUP) + OVRDEL
	c	
	$\begin{aligned} & \mathrm{c} * * * * * \\ & c \end{aligned}$	**** average floh during time interval
		IFPFLOW.LT.1.OE-10) FLOW=0.0
110		OVROUT FFLOW
		RETURN
		ENO

called to output simulation results in a summary format. The control is then returned to main program SRO.

The following common blocks are employed in Subroutine HYDRO:

- BLANK COMMON
- TAPES
- ABLK
- INFIL
- NEW
- CON
- MAX
- TEST

The computation steps are presented in flowchart form in Figure IV-9. Key variables not in common areas are presented in Table IV-7. The computer listing follows.

Subroutine QSHED1
Subroutine QSHED1 is used to estimate the initial mass of pollutants on each watershed subarea at the beginning of a storm. This is done by applying empirically determined pollutant buildup factors for the number of dry days prior to a storm and then reducing the total by the amount taken up by maintenance. QSHED1 is also called at entry point QSHED2 by WSHED for each time step to compute the amount of suspended solids washed off of each subarea surface type. Washoff mechanisms are simulated by using an exponential runoff function.

The following common blocks are employed:

- BLANK COMMON
- ABLK
- POLUT
- INFIL


FIGURE IV-9. Flowchart of Subroutine HYDRO


Figure IV-9
(Continued)


Figure IV-9 (Continued)

TABLE IV-7
KEY VARIABLES NOT IN COMMON FOR SUBROUTINE HYDRO

Fortran Variable	Description	Units
BASIN	Basin number	-
ERROR	Error in continuity as a percent of inflow volume	-
FLOW	Inlet flow	$\mathrm{ft}^{3} / \mathrm{sec}$
NOGG	Number of channels and inlets	-
PK	Inlet load by constituent	kg , No. of urganisms
PR	Percent load reduction by surface storage	-
PSUM	Total inlet load	kg
PTOT	Total washoff by subarea	kg
SUMCHL	Sum of change in channel volumes	$f t^{3}$
SUMSUR	Sum of change in surcharge volumes	$f t^{3}$
TOTIN	Total inlet volume	$f t^{3}$
totout	Total runoff volume plus change in channel storage	$f t^{3}$
WASH	Total washoff	kg

SUEROUTINE HYDRO

REAL MATEGER BASIN


$N$




```
n
PAGE
01/29/81 09.16.19
B\S+8**N1〕
t=1d0
74/750
SUGROUTINE HYDRO
O
O
i
品
\(n\)
0
0
\(\stackrel{\infty}{N}\)
\(\stackrel{2}{2}\)
0
\(\infty\)
\(\mathbf{N}\)
```

The computational sequence is depicted in flowchart form in Figure IV-10. Key variables not contained in common are presented in Table IV-8. The subroutine listing follows.

Subroutine RECAP
This subroutine reads the output tapes written in GUTTER and writes a summary report. The report consists of either hydraulic results alone or of hydraulic and quality results for inlets, gutters and channels, as specified for that run. The following common blocks are employed:

- BLANK COMMON
- ABLK
- TAPES

The flowchart is presented in Figure IV-11 followed by the computer listing.

Subroutine RHYDRO
This subroutine is called by HYDRO to read input data and perform some preparatory work, such as unit conversion, input error detection, and set-up of the gutter/channel connectivity array. RHYDRO is called only once and provides virtually all the necessary information for the complete runoff quantity and quality simulation.

There are several categories of input data read by RHYDRO. These include basic control information, rainfall hyetographs, inlet data, data for gutters, trapezoidal channels, pipes, overbank channels and detention basins, watershed data, and runoff quality data. All input data are echo printed.


FIGURE IV-10. Flowchart of Subroutine QSHED1

TABLE IV-8
KEY VARIABLES NOT CONTAINED IN COMMON FOR SUBROUTINE QSHEDI

Fortran   Variable	Description	Units
ALFA	Auxiliary computational variable	$\mathrm{sec}^{-1}$
AVAIL	Washoff availability factor	-
BETA	Auxiliary computational variable	$\mathrm{gm} / \mathrm{l} / \mathrm{sec}$
DFACT	Decay factor	-
DORG	Rainfall minus infiltration	ft
DRY	Effective dry days	days
J	Watershed number (internal)	-
K	Subarea number	-
NCLEAN	Number of times maintenance performed	-
PO	Material available for washoff from	gm
QIW	subarea	$\mathrm{ft}^{3} / \mathrm{sec}$
QT	Subarea inflow	$\mathrm{ft}^{3} / \mathrm{sec}$
R	Subarea outflow	$\mathrm{ft}^{\prime}$
SS	Runoff	lbs
TEMP	Suspended solids initial accumulation	$\mathrm{sec}^{\prime} / \mathrm{ft}^{3}$
TGS	Temporary variable	-
V	Effective maintenance efficiency	$\mathrm{ft}^{3}$
VDOT	Subarea volume	$\mathrm{ft}^{3} / \mathrm{sec}$
NGSAVE	Subarea volume time derivative	-
NHR	Number of inlets	-
NHRR	Number of hours	-
NINLET	Temporary variable	-
NLAKE	Number of inlets on grade	-
NMN	Number of detention basins	-
NMNN	Number of minutes	-
NOGG	Temporary variable	-
	Number of channels and inlets on grade	-

TABLE IV-8
(cont.)

Fortran   Variable	Description	Units
	Number of channels and inlets on grade	-
NOGS	Number of overbank channels	-
NOVR	Type channel	-
NP	Number of time steps simulated	-
NSTP	Temporary internal channel number	-
NTRY	Number of subareas in the given watershed	-
NW3	Read unit number	-
N5	Write unit number	-
N6	Overbank channel maximum flow	$\mathrm{ft} 3 / \mathrm{sec}$
OVRGQ	Overbank channel maximum velocity	$\mathrm{ft} / \mathrm{sec}$
OVRGV	Subarea Manning's roughness factor	$\mathrm{ft} 1 / 6$
W4	Cross slope	$\mathrm{ft} / \mathrm{ft}$
XSLOPP		


$N$
page
$01 / 29 / 81 \quad 09.16 .19$

FTN 4. $8+518$

SURROUTINE GEHEDI $74 / 750$ OPT $=1$



FIGURE IV-11. Flowchart of Subroutine RECAP


Figure IV-11
(Continued)



In addition to reading and printing input data, RHYDRO orders gutters and channels from upstream to downstream, creates dummy channels at inlets, prints gutter/channel connections and inlets, and sets up output tapes.

The following common blocks are employed in this subroutine:

- INLET
- BLANK COMMON
- TAPES
- ABLK
- INFIL
- NEW
- MISC
- REMOVE
- SLOPES

The flowchart for this subroutine is illustrated in Figure IV-12. Key variables not included in common are presented in Table IV-9 followed by the subroutine listing.

Subroutine WSHED
WSHED computes the depth and flow of water for each watershed subarea. A Newton-Raphson solution technique is used to solve for the depth and outflow from each subarea based on continuity and uniform flow equations. Subroutine QSHED2 is called to compute the corresponding pollutographs for each watershed subarea.

The following common blocks are employed:

- BLANK COMMON
- INFIL
- POLUT

The computational sequence is shown in the flowchart of Figure IV-13. Key variables not included in common are itemized in Table IV-10.


FIGURE IV-12. Flowchart of Subroutine RHYDRO


Figure IV-12
(Continued)


KEY VARIABLES NOT CONTAINED IN COMMON FOR SUBROUTINE RHYDRO

Fortran Variable	Description	Units
AREA	Watershed area	ac or ha
BASIN	Basin number	
GA	Full flow area of the channel	$\mathrm{ft}^{2}$ or $\mathrm{m}^{2}$
GMAN	Average Manning coefficient for normal and overbank channel	$\mathrm{ft}^{1 / 6}$ or m ${ }^{1 / 6}$
GP	Full flow wetted perimeter of the channel	ft or m
GQ	Full channel flow	cfs or cms
GR	Full channel hydraulic radius	ft or m
G1	Detention basin or Overbank channel width	ft or m
G2	Detention basin area	ac or ha
G3	Detention basin slope	
G4	Detention basin or Overbank channel side slope 1	-
G5	Detention basin or Overbank channel side slope 2	1/6 1/6
G6	Overbank channel Manning's n	$\mathrm{ft}^{1 / 6}$ or $\mathrm{m}^{1 / 6}$
G7	Overbank channel maximum depth	ft or m
G8	Detention basin volume at outfall	acre-ft or m ${ }^{3}$
G9	Detention basin initial depth	ft or $m$
IDENT	Overbank channel number	-
IG	Detention basin raingage	-
INFIL	Number of infiltration types	-
INLETS	Number of inlets	-
NBASIN	Basin number	-
NCHAN	Number of channels	-
NDIM	Dimension limit	-

TABLE IV-9
(continued)

Fortran   Variable	Description	Units
NERROR	Number of input errors	-
NGSAVE	Number of inlet	-
NHR	Number of hours	-
NHRR	Temporary variable	-
NINLET	Number of inlets on grade	-
NLAKE	Number of detention basins	-
NMN	Number of minutes	-
NMNN	Temporary variable	-
NOGG	Number of channels and inlets on grade	-
NOGS	Number of channels and inlets on grade	-
NOVR	Number of overbank channels	-
NP	Type channel	-
NSTP	Number of time steps simulated	-
NTRY	Temporary internal channel number	-
NW3	Number of subareas in the given watershed	-
N5	Read unit number	-
N6	Write unit number	-
OVRGQ	Overbank channel maximum flow	-
OVRGV	Overbank channel maximum velocity	$\mathrm{ft} / \mathrm{sec}$ or $\mathrm{m} / \mathrm{sec}$
W4	Subarea Manning's roughness factor	ft
$1 / 6$ or m $1 / 6$		


 COMMON/INLET/ITYPGQITYPC, W, A,CW\&CORFOWSOASQGLIOGLIC,GLISORD COMMON/SLOPESTISLOP (4), SLOP (6) OCSLOP (4)

$$
\begin{aligned}
& \text { 2DINLG(12,6,4) } \\
& \text { COMMON/ABLK/ }
\end{aligned}
$$

QINLC(6,12), DINLC ( 12,6$)$
VGESTO (200) QNOSUR (150) QUNLET(150) PINLET (150.13:9

OVRDFL. (3) OVRCON (3) JOVER(3), TWIDTH(13), SUMRL, SUMGWI
COMMON/MISC/XSLOPE(150), MGTC(200),
ISTA1A(150), ISTA1B(150), ISTA2A(150), ISTA2E(150).
ELEVAI(150), ELEVA2(150), NOGUTTR,DSG,DSC
COMNON/REMOVE/DET
DIMENSION OVRGV (3), OVRGQ(3) TY(30\%, PE (30)
DIMENSION OVRGV(3), OVRGG(3)9 TY(30;9PE(30)
DATA W,EIR, OJ.TLET/4H WE, $4 H I R$ \&H OUT.4HLET f

c

$$
\begin{aligned}
& \text { NERROR }=0 \\
& \text { READ (N5, } 40 \text { ) TITLE }
\end{aligned}
$$

$$
\begin{aligned}
& \text { FORMAT(2CA4) } \\
& \text { READ(N5,50) BASIN,NSTEP,NHR,NMN, DELT, NRGAG,IMET } \\
& \text { FORMAT }(2 I 5, I 3, I 2, F 5,1,2 I 5)
\end{aligned}
$$

$$
\text { TZERO }=3600 * F L O A T(N H R)+60 * \text { FLOAT (NMNJ }
$$

WRITE(N6 2999 )


$a$
0
0
0
$n$
0
0
40

$$
\begin{aligned}
& \text { FORMAT } 2 C A 4) \\
& \text { READ(N5,50) }
\end{aligned}
$$

4000 FORMAT8J\&

in
令

```
O
M
01/29/81 09.16.19
8IG48** NAd
I=1dO OSL/HL
3&OAHY JNIAMO&BOS
```











$\begin{array}{lll}0 & 0 & 0 \\ \sim & m \\ 0 & 0 \\ 0 & 0 \\ n & \pi\end{array}$
5040
5041



FORMAT(**
INLETS ON GRAJE IN CHANNELS
WRITE(N6.4136)
FORMAT $* * * 30 x, *$ OR INLETS ON GRADE IN CHANNELS: *)
GO YO ( $5500,5510,5520,5530,5540,5550)$. ITYPC
5050
5051
6010

C****
$\circ$
$\stackrel{0}{\square}$
$\stackrel{7}{5}$
$\begin{array}{ll}0 \\ 5 & 0 \\ 5\end{array}$
5500






















$\begin{array}{ll}\infty \\ \sim & n \\ \sim\end{array}$
$\stackrel{\circ}{i}$
물 品
合
0
0
0
ОуOAHy JNILNOyEns
$\tau=1 d 0 \quad 0 \leq L / カ L$

$\sim$

	D0 9030 $\mathrm{K}=1.12$
9030	GINLC(J,K) = DIVLC (K, ل)
C	
C****	PRINT CURVES
9022	IF(IMET.EQ.0) GO TO 9112
C	
C****	Metric output
	WRITE (N6.9111)
9111	
	2** URBGN HIGHWAY DPAINAGE MODEL *****8X**ATER RESOURCES DIVISIO
	$4{ }^{*} * * * * 8 X *$ CANP DRESSER AMD MCKEE * *
	$\epsilon * * * X, *$ ANNANDALE, VIRGIVIA *//EIX**CAPACITY CURVES FOP INLETS IN
	TCHARNELS (D IV METEPS) :*/)
	GO TO 113
C	
C****	ERITISH UNITS
9112	WRITE (N6.9011)
9011	
	2** UREAN HIGHWAY DRAINAGE MODEL ***** 8 **WATER RESCURCES OIVISIO
	3N * / * * * DEPARTMENT OF TRANSPORTATION**16X* $40 H * * *$
	4 ****8X**CANP DRESSEF AND MCKEE * *
	7CHANNELS (D IV FEET) : * 1 )
9113	HRITE(N6,5120) (SLOP(J), ${ }^{\text {( }}=1,6$ )
	WRITE (N6.95125)
95125	FCRMAT(1x*6(* $01 / 0 * * 5 x * D * * 9 x)$ )
	DO 95135 NLINE $=1.6$
	$K K=N L I N E * 2$
	K. $1=K K-1$
95135	WRITE(N6,5130) ( (GINLC(J,K) , K=K1, KK), $J=1,6)$
	IF(IMET.EQ.0) GOTO 7066
C	
C****	CONVERT CMS TO CFS
	DO $7166 \mathrm{~J}=106$
	DO $7166 \mathrm{~K}=2.12 .2$
7166	GINLC $(J, K)=$ QIVLC $(J * K) * 35.3$
7066	CONTINUE
C	
C****	INLET SIZE - GUTTERS, CHANNELS AND SUMPS
8066	READ(N5.1030) RD
	IFIINCNC.NE.2) GC TO 3320
	IFIIMET.EQ.0) GO TO 1952
C	
C****	METRIC OUTPUT
	WRITE(N6.1051) RD
1951	
	GO TO 3021
C	
C****	ERITISH UNITS
1952	HRYTE(NE.1955) RD
1955	FORMATP/// $20 \times$ *INLET CAPACITY REDUCTION FACTOR**F1C.2.1\%
	GO TO 3021
3320	WRITE(N6,2999)

$\underset{\sim}{5}$
0
0
$n$
0
$\infty$
$\cdots \quad \infty$
$n$
$\infty$
$n$
$\begin{array}{ll}0 & \text { n } \\ \cdots & \text { n } \\ m\end{array}$

	400		XFIMETOEGOD WRITESNGQ1955: RD 1FEIMETOEQ.1) WRITE(NGg19518 RD
		c	
		C***	*** gutier/channel data
	405	c	
		3021	$\begin{aligned} & \text { NoguTt }=0 \\ & \text { } C H K=1 \end{aligned}$
			$00480 \mathrm{P}=1 . \mathrm{NG}$
		4021	
	410	1115	FORMAT(I10.2(17,1X,128,5Fi0.0)
			READ(N5,1116) NGTO(N), NGSTOMN),NFG(N), DFULLPN), SPMAX(N)
		1116	FORMAT 10 OX 3110.2 F 10.08
		C****	calculate gjtter/channel length
	415		GLEN(N) = ABS(RISTA2A(N)-ISTA1A(N) ) * $10000 *$ (ISTA2B(N)-ISTAIE(N) )
			IF( $\mathrm{N} / 39+39)$.EQ.N) GO TC 4020 ( ${ }^{\text {a }}$
			IF (NAMEG(N).EQ.0) GO TO 4020
		4042	IF (NGTO(N).GT*O.OR•NGSTO(N).GT. S) $^{\text {GO }}$ TO 5012
			NERROR $=$ NERRJR 41
	420		WRITE(NG:5011) NAMEG(N)
		5011	2 A DOWNSTREAM GUTTER*)
		5012	IF (GN(N) OEC.C.0) GN(N) $=0.014$
	425	C****	print gutterfehannel data
			IFAN.EQ.1.OR.(N/39*398.EQ.N) GO TO 4016
			G0 104017
¢		4016	WRITE ${ }^{\text {d }}$ (29998
			WRITE (NG.4018)
	430	4018	
			28**91x*96\%*=*3/1)
			IFIIMET.EQ.1) GO TO 4118
		c	
		C****	BRITISH UNITS
	435		HRITE(N604115)
		4115	
	440		
			60104017
		C	
		C****	metric output
		4118	WRITE (NG,4019)
	445	4019	
	450	4017	HRITE(NG,4025) NAMEG(N), NGTC(N), NGSTO(N), ISTAIAEN), ISTAIB(N), ISTA2
			2A(N), ISTA2B(N), GLEN(N),GN(N),GSLOPE(N)
		4025	
			29x,F6.4.9x,F7.3)
			MGTO(N) =NGTO(V)
	455		G0 To 480
		4020	$M N=N-1$




$\begin{array}{ll}0 & 10 \\ 0 & \text { n } \\ 0 & 0\end{array}$
§
0
0
0
$n$
6
0
0
$\because \quad \%$

Reproduced from
best available copy.

685	$\begin{aligned} & c \\ & c \ldots \ldots \\ & c \end{aligned}$	**** set up sutter/inlet connections
		INLETS $=0$
690		$00640 \mathrm{~N}=1$, VOG
		IF (NGSTOCN).E®.0) 60 T0 640
		If(inlets.le.0) G0 to 6:8
695		$\mathrm{N} 1=\mathrm{NOG}+1$
		N2=NOG+INLETS
		$00635 \mathrm{NH}=\mathrm{N} 1, \mathrm{~N} 2$
		If (ngsto (n)-EJ.iamegenn) GC to 630
	635	continue
	638	INLETS $=$ INLETS 1
700		NCHAN=NCHAN+1
		NAMEG(NCHAN) $=$ NGSTO(N)
		NGTO(NCHAN) =NGTO(N)
		NGTOI(INLETS) = NCHAN
		NPGG(NCHAN) $=9$
705	630	NGTO(N)=NGSTOCN)
	640	continue
	C......	..... set up gutter connectivity tables
716	$c$	
		NCHAR: $=$ NOG + IVLETS   DO $750 \mathrm{~N}=1$, VCHAN
		NN $=$ NOG + IMLETS
		DO 720 NGOTO $=1$, NN
7	$\begin{aligned} & 720 \\ & c \end{aligned}$	continue
	c****	CREATE OUMMY SUTTERS AS NEEDED
		INLETS $=$ INLETS +1 NGOTO $=$ NOG + INLETS
120		IF(NGOTO. GT-NG) 60 T0 760
		NAMEG(NGOTO) = VGSTO (N)
		NGTO(N) = NGSTOL ${ }^{\text {a }}$ )
		NGTOI(INLETS) $=$ NGOto
725	736	Continue
		DO $740 \mathrm{~J}=1$, NIV
		NGTOG(NGOTO, $\mathrm{SI}=\mathrm{N}$
730	740	continue
	750	continue 60 TO 780
	c	
	c****	error in data
735	760 770	WRItEING,770) NGOTO,NG
	770	FORMATC* ---- ERROR --.-- THE ASSIGNED CHANNEL NUMEERS*, 15, WHICH
		2INCLUDES DUMMIES EXCEEDS the common storage block*,i5) NERROR=NERROR 1
	780	Continue
740		NOGS NOG +INLETS DO $800 \mathrm{~N}=1$.NCHAN


~n
$\stackrel{\circ}{\circ}$
$\stackrel{n}{n}$
$\stackrel{i}{i}$
$\stackrel{4}{2}$
$\stackrel{\infty}{\infty}$
$\underset{\sim}{\text { ® }}$
뭉
$\stackrel{2}{2}$




1290 DO 1310 N $=1, N I N$.
IF(NWTOG(J.N)) 13
$\begin{array}{ll}1250 & N=N-1 \\ & \text { IF(N) } 1260.1260 .1270 \\ 1260 \quad \text { WRITE(NG.1280) NAMEG(J) }\end{array}$
1270
1280
1290
1300

$$
\begin{aligned}
& \text { CONTIN } \\
& \text { N=N-1 } \\
& \text { IFIN) } \\
& \text { WRITE } \\
& \text { FORMAT } \\
& \text { CONTIN } \\
& \text { WRITE } \\
& \text { FORMA } \\
& \text { 2RIBUT } \\
& \text { DO 142 } \\
& \text { N NGTC }
\end{aligned}
$$

$$
\begin{aligned}
& 1350.1350 .1330 \\
& (N 6.1340)(N G T O(K), K=1, N) \\
& T(1 H+.74 \times, 10 I 5)
\end{aligned}
$$



1340
1350

$$
\begin{aligned}
& (N)=N \\
& \text { INUE }
\end{aligned}
$$

$$
\begin{aligned}
& \text { TIIH } \\
& \text { NUE } \\
& \text { NGG }
\end{aligned}
$$

NSAVE=INLETS
DO $1540 \quad \mathrm{~J}=1$, INLETS
$\mathrm{N}=\mathrm{NGTOI}(\mathrm{J})$ INES
3nNIINOJ
$=$ CRIBA甘SI

C $\mathrm{C} * * * * * * * *$ REAO ANO WRITE QUALITY INPUTS
C READ(N5,1560) NOS,DRYDAY,CLFREQ,REFF,DET $\begin{array}{ll}1560 \text { FORMAT(I10,4F10.0 } \\ & \text { IFSNQS.GT.O) GO TO } 1600 \\ & \text { HRITE(NG,1590) }\end{array}$
$n$
$\sim$
$\sim$
$\stackrel{\circ}{\circ}$
$\stackrel{\sim}{6}$

$N$

0
$\infty$
$\infty$
$n$
$\infty$
$\infty$
0
$\sigma$

$n$

$i$
0
0

$n$
$\stackrel{n}{n}$

0
0
0
0
5
0
0
0

1590 FORMATC／／／10X＊＊．．．．．．OUALITY SIMULATION NOT INCLUDED IN THIS RUN．．．． ㅇ
0
0
OYOAHY 3NILMOY日CS

$$
\begin{aligned}
& \text { 2**) } \\
& \text { GOTOM } 1670 \\
& \text { WRITEING } 166
\end{aligned}
$$


ag
品
$\circ$
$\stackrel{\circ}{0}$
吕
$\stackrel{\square}{\square}$
$\stackrel{\curvearrowleft}{a}$
1020
$\stackrel{\sim}{\sim}$




FIGURE IV-13. Flowchart of Subroutine WSHED


Figure IV-13
(Continued)

## TABLE IV-10

KEY VARIABLES NOT IN COMMON FOR SUBROUTINE WSHED

Fortran   Variable	Description	Units
NQS	Quality option indicator	-
DORG	Rainfall minus infiltration	ft



DC 320 J=I:NOW
RI=0.
NGAG=NHYET(J)
IF(TIME2.LE.TZAIN) RI=RAIN(IND,NGAG)
IF(TIME2•LE•T ZAIN) RI=RAIN(IND, NGAG)
IF(RI•LE,O) GJ TO 70
IF(TIMEW(J) GT•O-)GO TO 60
TIMEW(J) $=0$ - S*DELT
TIMEW(J) =TIMEW(J) + DELT
DELR=0.
$N C A=N C(J)$
$D O 315 K=1, V C A$
WFLO(J,K) $=0$.

00
$\because \quad \infty \quad \infty \quad \infty \quad \infty \quad \infty \quad \infty$
$\stackrel{17}{\sim}$
N N N
n
$\%$

IF K K.GT.1) WFLOT= WFLO(J,K-1)/WAR
IF(JTYP) 201,201,205
$\dot{1}$
in
号
0
0
IF(RAININ(J,K).LT.DEPIN(JTYP)) GO TO 206
RLOSS $=0.0$
GOLOSS=WLMIN(JTYP)
$\begin{array}{ll}-1 & N \\ \text { N } & 0 \\ N\end{array}$

$\infty$
$\stackrel{\circ}{\circ}$

$C * * * * * * *$ COMPUTE AVERAGE INFILTRATION DURING TIME INTERVAL
这
01／29／81 09．16．19


This routine summarizes the simulation results. For surface channels and gutters, full flow, velocity, depth, and flow spread are printed. The simulation results are presented for each channel and gutter in terms of maximum computed flow, velocity, and depth and their time of occurrence. The computational sequence is presented in flowchart form in Figure IV-14. Key variables not contained in the following common blocks employed in the routine are presented in Table IV-11:

- BLANK COMMON
- MAX
- NEW
- MISC

The computer listing follows.

Subroutine CARRY
This subroutine is called from Subroutine GUTTER to compute the carryover for the inlet immediately upstream of the gutter or channel section considered. Subroutine CARRY employs the following common blocks:

- BLANK COMMON
- SYS
- LOC
- INLET
- ROUT
- COEFI

For zero gutter/channel depth, the carryover flow is set to zero. For nonzero gutter/channel depth, the hydraulic conditions at the inlet are calculated based on the depth. For inlets on grade, the appropriate design equations based on inlet type, efficiency curves supplied as input, or efficiency curves from Block Data are used to determine the carryover. When efficiency curves supplied as input are used, the subroutine will select and use the appropriate curve based on longitudinal slope and cross-slope


FIGURE IV-14. Flowchart of Subroutine SUMSTAT

TABLE IV-11
KEY VARIABLES NOT IN COMMON FOR SUBROUTINE SUMSTAT

Fortran   Variable	Description	Units
DR	Ratio of maximum computed depth to design   depth	
R	Fraction of maximum depth at design flow   spread	-
FHF	Feet of highway flooded	-
GA	Design flow area	ft
GAA	Maximum computed flow area	$\mathrm{ft}^{2}$
GP	Design flow wetted perimeter	$\mathrm{ft}^{2}$
GR	Design hydraulic radius	ft
GQ	Design flow	ft
GV	Design velocity	$\mathrm{ft} / \mathrm{sec}$
GVV	Maximum computed velocity	$\mathrm{ft} / \mathrm{sec}$
DSF	Maximum computed flow spread	$\mathrm{ft} / \mathrm{sec}$

3NGUT（20C），PCTZER，NPG（150），SFMAX（150）


$$
\begin{aligned}
& \text { COMMON/MAX/MAXFLW(150), MAXHR(150).MAYMIN(150),MA) } \\
& \text { 2SURLEIV(150) } \\
& \text { COMMON/MISC/XSLOPE(150), MGTC(200). } \\
& \text { 2ISTAIA(150).ISTA1B(150).ISTA2A(150).ISTA2B(150). } \\
& \text { 3ELEVA1(150).ELEVA2(150).NOGUTTR.DSG.DSC }
\end{aligned}
$$

[^2]$C * * * * * * * *$ COMPUTE SJMMARY STATISTICS FOR ABOVE－GROUND CHANNELS
DO 160 I＝1．VOGUTTR．
IFRI．EQ．1．OR．OI／36＊
IFRI．EQ．1．OR．（I／36＊36）．EG．I）GO TO 200
GO TO 2G1
GO TO
WRITE（NG，2 299$)$
FORMAT 0
0
0
0
0
0

N

	$\begin{aligned} & 302 \\ & 303 \end{aligned}$	$\begin{aligned} & \text { WRITE(NE, } 303) \\ & \text { FORMAT(***52 } x_{*} * \text { DESIGN** } 4 x_{*} 4\left(3 X_{*} * \text { MAXIMUM*) } 4 x_{*} * T I M E * 1 * * * 2 X_{*} *\right. \text { GUTTE } \end{aligned}$
60		
65		$76 \times, 6(*-*), 6 x, 8(*-*) \cdot 2(6 x * 6(*-*)), 6 x, 48(*-*) / 7$
	C	
	C****	DESIGN FLOW AND VELOCITY
	201	IF(NPG(I) -EQ.3) GOTO 250
		GA=DFULL(I)*(GWIDTH(I) + 0.5*OFULL(I)*(GSI(I) + GS2 (I))
70		$G P=G W I D T H(I)+D F U L L(I) *(S Q R T(1.0 * G S 1(I) * * 2)+S Q R T(1 * 0 * G S 2(N N) * * 2))$
		GO 10260
	250	GA $=0.7854$ *DFULL (I)**2.
		GP=3.1416*DFULL(I)
	260	$G R=G A / G P$
75		$G V=1.486 / G N(I) * S Q R T(G S L O P E(I)) * G R * * 0.6666667$
		$G Q=G A * G V$
	C	
	C****	COMPUTE MAXIMUM FLOW FCR RUA
		IF(NPG(I) -E - 3) GO TO 270
80		GAA $=$ PAXDEP(I)*(GWIDTH(I) + C. $5 * M A X D E P(I) *(G S I(I)+G S 2(I)))$
		GO TO 280
	270	GAA $=(G W I D T H(I) * * 2 / 4 *) *(M A X D E P(I)-0.5 * S I N(2 * * M A X D E P(I)))$
	282	GVV=MAXFLW(I)/GAA
	C	
85	C****	PRINT GUTTER/CHANNEL STATISTICS
		$F S P=G W I D T H(I)+M A X D E P(I) *(G S 1(I)+G S 2(I))$
		IF (IMET.EQ.0) GO TO 400
	C	
	C****	METRIC OUTPUT
90		GQ=GQ/35.3
		$E V=G V / 3.281$
		MAXFLW(I) =MAXFLW(I)/35.3
		GVV=GVV/3.281.
		SPMAX(I) $=$ SPMAX(I)/3.281
95		$F S P=F S P / 3.281$
		DFULL (I) = DF UL: (1)/3.221
		MAXDEP(I) $=$ MAXSEP(I)/3.281
	400	IF(NPG(I) EQQ.I) GO TO 420
		WRITE(6,410) NAMEG(I), GG, GV, DFULL(I), MAXFLW(I) GVV, MAXDEP(I) © MAXH
100		2R(I), MAXMIN(I)
	410	
		2,F4.2.7X,*-*, $4 \mathrm{X}, \mathrm{I} 3,3 \mathrm{X}, \mathrm{I} 2)$
		GOT0 100
	420	WRITE (N6,430) NAMEG(I), GQ,GV, DFULL(I), SPMAX(I), MAXFLW(I), GVV.
105		2MAXDEP(I),FSP, MAXHR(I), MAXMIN(I)
	$43 \hat{0}$	
		$25 X, F 4,2,5 X, F 4,1,3 X, I 3,3 X, I 2)$
	100	CONTINUE
		RETURN
110		END

in the case of gutters and on longitudinal slope in the case of channels. The user may also elect the option whereby efficiency curves are built into the program in Block Data. In that case, the appropriate curve is selected from Block Data.

Key variables not in common are shown in Table IV-12, followed by a listing of this subroutine.

Variables in Common
Program SRO employes 15 separate common blocks as listed below:

- LAB
- ABLK
- CON
- BLANK COMMON
- NEW
- POLUT
- INFIL
- REMOVE
- TEST
- TAPES
- MAX
- INLET
- MISC
- SLOPES
- NOMOG

The variables contained in each block are presented in Tables IV-13 through IV-27, respectively.

TABLE IV-12
KEY VARIABLES NOT IN COMMON FOR SUBROUTINE CARRY

Fortran   Variable	Description	Units
ALOCUS	Gutter Flow Area	$\mathrm{ft}^{2}$ or $\mathrm{m}^{2}$
C	Flow for Inlets in Gutters	cfs or cms
	Flow Depth for Inlets in Channels	$f t$ or $m$
DDES	Gutter Flow Depth for Sump Inlet	$f t$ or m
DQ	Gutter Flow Depth for Inlets on Grade	ft or m
FW	Izzard Froude No. for Depressed Curb Inlets	-
GLMAX	Izzard Depressed Curb Opening Maximum Length for Weir Phase	ft or m
GL1	Izzard Depressed Curb Opening Length One	ft or m
GL1ØD	Izzard Depressed Curb Opening Length for 100\% Interception	ft or m
IZTRP	Flag for Extrapolation Beyond Last Point on Inlet Efficiency Curve	-
QC	Carryover	cfs or cms
QI	Intercepted Flow	cfs or cms
Q	Gutter Flow to Inlet	cfs or cms
SX	Gutter Cross Slope at Inlet (Side Slope 1)	$\mathrm{ft} / \mathrm{ft}$ or m/m
VLOCUS	Gutter Flow Velocity at Inlet	fps or mps
WLOCUS	Gutter Flow Spread at Inlet	ft or m
WP	Wetted Perimeter of Gutter Flow at Inlet	ft or m




 WRITE TNG,21)
$501 \quad \begin{aligned} & \text { STOP } \\ & S X=1 / 6 S 1(N)\end{aligned}$
$505 \operatorname{CSLOP}(I)=1 . / F L O A T(I S L O P(I))$
C**** CROSS-SLOPE (GUTTERS ONLY)

AayロJ JNILNOYAOS

Stop	
c******* EGUATION FOR UNOEPRESSED COMBINATIO	
50	WRITE(NG.1010) TITLE WRITE (N6.55)
55	
	3ay:*)
	WRITE (N6,18)
	STOP



74/750 OPT=1
c******** EQUATION FOR DEPRESEED COMEINATION INLETS 60 WRITE(N6,1010) TITLE

6
stop
ưu in
$\checkmark$
W
0
0
$a$


TABLE IV-13
COMMON BLOCK LAB

Fortran   Variable	Description	Units
HORIZ	Curve label for x-axis	None
IT	Internal control variable subroutine	None
HCURVE (PPLOT)	None	
TITLE	Title printed out with graphs	None
VERT	Curve label for y-axis (British units)	None
XLAB	Numerical scale labels for x-axis	None
YLAB	Numerical scale labels for y-axis	None
VERTM	Curve label for y-axis (metric units)	

TABLE IV-14
COMMON BLOCK ABEK

Fortran Variable	Description	Units
C	Concentration of conservative constituent in channel	g/1
CDOT	Internal variable, time derivative of concentration	$\mathrm{g} / 1 / \mathrm{sec}$
CLFREQ	Interval between maintenance	days
DRYDAY	Number of dry days prior to storm	days
NQS	Number of quality constituents	None
POFF	Rate of mass runoff, later concentration	$\mathrm{g} / \mathrm{sec}, \mathrm{mg}$
PSHED	Mass of suspended solids on watershed subarea	grams
QFACT	mg constituent per g of suspended solids	$\mathrm{mg} / \mathrm{gram}$
REFF	Fraction of suspended solids removed by maintenance	None
SSFACT	Suspended solids ultimate load (half saturation constants)	1bs/day
	TABLE IV-15 COMMON BLOCK CON	
Fortran Variable	Description	Units
ICTTL	Constituent title array	None

TABLE IV-16

BLANK COMMON

Variable Name	Description	Unit
DECAY	Exponential decay rate for infiltration	1/sec
DELD	Trial change in flow depth	feet
DELT	Integration time step	sec, min
DELT2	One half of a time step	sec, min
DFULL	Maximum depth of channel	feet
dummy ${ }^{2}$	Dummy variable	none
FLOW ${ }^{3}$	Hydrograph flow value	cfs
FLOWOT ${ }^{3}$	Temporary variable for printing flow	cfs
GCON	Manning's equation less hydraulic radius	none
GDEPTH	Depth of flow in channel	feet
GFLOW	Average channel outflow over time step	cfs
GLEN	Length of channel	feet
GN	Manning's roughness coefficient	none
GSLOPE	Slope of channel	$\mathrm{ft} / \mathrm{mi}, \mathrm{ft} / \mathrm{ft}$
GS1, GS2	Channel side slopes, left and right (H/V)	$\mathrm{ft} / \mathrm{ft}$
GWIDTH	Pipe diameter or channel bottom width	$f t$
HGRAPH ${ }^{1}$	Magnitude of variable to be printed in vertical coordinate of the curve	None
HISTOG	Time interval between hyetograph input values	sec
HTIME ${ }^{1}$	Time interval to be printed in the horizontal coordinate of the curve	none
IPLOT	External numbers of channels and inlets to be plotted	none
INTCNT	Printing counter	none
INTERV	Number of time steps between printed hydrograph values	none
IPRNT	External numbers of channels for which hydrographs will be printed	none
IMET	Units option flag	none

TABLE IV-16
(cont.)

Variable Name	Description	Unit
ISAVE	External numbers of inlets for which hydrographs will be saved	none
NAMEW	External number of watershed	none
ICODE	Plot control integer, zero means no plot, one means plot	none
NG	Maximum number of channels	none
NGTOC	Channel connections	none
NGTOI	Sump inlet connections	none
NGUT	Array ordering channels from upstream to downstream	none
NHISTO	Number of rainfall time intervals	none
NHR ${ }^{3}$	Hour for hydrograph output	hr
NHYET	Internal number of hyetograph applied to subarea	none
NIN	Maximum number of channels draining to channel, and watersheds draining to channel	none
NING	Maximum number of channels draining to sump inlets	none
NLOC ${ }^{4}$	Node number of hydrograph point	none
NOG	Total number of channels	none
NOW	Total number of watersheds	none
NPG	Control switch for type of channel	none
NPLOT	Number of inlets and channels to be plotted	none
NPRNT	Number of inlets and channels to be printed	none
NPT ${ }^{4}$	Number of points to be plotted	none
NRGAG	Number of hyetographs	none
NSAVE	Number of inlets	none
NSTEP	- Number of time steps in simulation	none
NW	Maximum number of watersheds	none

TABLE IV-16
(cont.)

Variable   Name	Description	Unit
NWTOG	Channel connection	none
NWTOI	Sump inlet connection	none
OUT ${ }^{3}$	Temporary variable for printing concentration	$\mathrm{mg} / 1$
OUTFLW	Flow out of the channel	cfs
QUAL ${ }^{3}$	Concentration of quality constituents	$\mathrm{mg} / 1$
QIN	Inflow to channel	cfs
QSUR	Surcharge volume	$\mathrm{ft}^{3}$
RAIN	Rainfall rates	$\mathrm{in} / \mathrm{hr} \&$
		$\mathrm{ft} / \mathrm{sec}$
RI	Rainfall rate for the time step	$\mathrm{ft} / \mathrm{sec}^{\text {RLOSS }}$

TABLE IV-16
(cont.)

Variable Name	Description	Unit
WFLOW	Flow off watershed	cfs
WLMAX	Maximum infiltration rate	$\mathrm{in} / \mathrm{hr}$
WLMIN	Minimum infiltration rate	$\mathrm{in} / \mathrm{hr}$
WSLOPE	Average slope of subarea	$\mathrm{ft} / \mathrm{ft}$
WSTORE	Depression storage on surface of subarea	ft
WWIDTH	Average width of watershed	ft
$\chi^{4}$	$X$ coordinate array for plots	
$y^{4}$	$Y$ coordinate array for plots	
ys 4	Data file information for plots	
$Y T^{4}$	Data file information for plots	
TUsed only in HCURVE and HYDRO		
${ }^{2}$ Used only in HCURVE		
$3^{\text {Used only }}$ in RECAP		
4 Used only in GRAPH		

TABLE IV-17
COMMON BLOCK NEW

Fortran Variable	Description	Units
AREALK	Surface area of detention basin	$f t^{2}$
INLET2	Number of inputs read from tape	none
ISAVE2	External numbers of input channels read from tape	none
JOVER	Internal number of overbank channel	none
LKHYET	Internal raingage number for detention basin	none
NAMEG	External number of channe]	none
NGSTO	External number of inlet	none
NGSUR	Internal number of channel receiving overflows	none
NGTO	External number of channel to which subarea drains	none
OVRCON	Manning's equation for overbank channel, less hydraulic radius	none
OVRDEP	Depth of flow in overbank channel	feet
OVRDFL	Full depth of overbank channel	feet
OVRGN	Manning's $n$ of overbank channel	none
OVRGS 1	Left-hand side slope of overbank channel	none
OVRGS2	Right-hand side slope of overbank channel	none
OVRWTH	Bottom width of overbank channel	feet
PINLET	Input loadagraph	cfs $\times \mathrm{g} / 1$
QI	Flow off watersheds into channel during time step	cfs
QINLET	Input hydrograph	cfs
SUMRL	Sum of volume of rain on detention basin	$f t^{3}$
TWIDTH	Top width of base channel	feet
VOLMLK	Volume of detention basin	$\mathrm{ft}^{3}$
VOL1	Volume of water in channel at start of simulation	$f t^{3}$

TABLE IV-17
(cont.)

Fortran   Variable	Description	Units
VOL2	Volume of water in channel at end of   simulation   Intercepted flow for inlets on grade	$\mathrm{ft}^{3}$
XFLOW	cfs	

TABLE IV-18

## COMMON BLOCK POLUT

Fortran   Variable	Description	Units
WFLO	Watershed subarea outflow   WDOT	Derivative of watershed subarea concentration   With respect to time
Watershed subarea concentration	cfs	$\mathrm{gm} / \mathrm{l} / \mathrm{sec}$
		$\mathrm{gm} / \mathrm{l}$

TABLE IV-19 COMMON BLOCK INFIL

Fortran   Variable	Description	Units
	Maximum allowable infiltration	inches
DEPIN	Summation of infiltration	inches
RAININ	Time for infiltration rate decay	sec
TIMEW	Watershed subarea surface type	none
WTYPE	Number of subareas in each watershed	none

TABLE IV-20
COMMON BLOCK REMOVE

Fortran   Variable	Description	Units
DET	Detention time for $50 \%$ suspended solids   removal	hrs

TABLE IV-21
COMMON BLOCK TEST

Fortran   Variable	Description	Units
SUMTI	Watershed load to drainage system	Kg

TABLE IV-22
COMMON BLOCK TAPES

Fortran   Variable	Description	Units
	Input tape number array	None
JIN	Output tape number array	None
JOUT	Input device number	None
N5	Output device number	None
N6		

TABLE IV-23
COMMON BLOCK MAX

Fortran   Variable	Description	Units
	Maximum computed flow	cfs
MAXFLW	Time of maximum computed depth	hrs
MAXHR	Time of maximum computed depth	min
MAXMIN	Maximum computed depth	ft
MAXDEP	Length of surcharge	hr

TABLE IV-24
COMMON BLOCK INLET

Fortran   Variable	Description	Units
ITYPG	Inlet type in gutters	None
ITYPC	Inlet type in channels	None
ITYPS	Inlet type in sump	None
W	Grate width for inlets on grade	ft
A	Depression depth for inlets on grade	ft
CW	Weir coefficient	$\mathrm{ft} 1 / 2 / \mathrm{sec}$
CORF	Orifice coefficient	None
WS	Grate width for inlets in sump	ft
AS	Depression depth for inlets in sump	ft
GLI	Inlet length in gutters	ft
GLIS	Inlet length in sump	ft
GLIC	Inlet length in channels	ft
RD	Inlet capacity reduction factor	None

> TABLE IV-25
> COMMON BLOCK MISC

Fortran   Variable	Description	Units
		ft
ISTA1A	Station number 1 (hundreds)	ft
ISTA1B	Station number 1 (units)	ft
ISTA2A	Station number 2 (hundreds)	ft
ISTA2B	Station number 2 (units)	ft
ELEVA1	Elevation at station 1	ft
ELEVA2	Elevation at station 2	None
NOGUTTR	Number of channels/gutters	

TABLE IV-26
COMMON BLOCK SLOPES

Fortran   Variable	Description	Units
ISLOP	Reciprocal of highway cross-slope	None
SLOP	Gutter/channel longitudinal slope	None
CSLOP	Highway cross-slope	None

TABLE IV-27
COMMON BLOCK NOMOG

Fortran   Variable	Description	Units
INOMG	Gutter inlet simulation option	None
INOMC	Channel inlet simulation option	None
INOMS	Sump inlet simulation option	None
QINLG	Gutter inlet efficiency curves	--
QINLS	Sump inlet efficiency curves	--
DINLG	Gutter inlet efficiency curves in Block Data	--
DINLS	Sump inlet efficiency curves in Block Data	--
QINLC	Channel inlet efficiency curves	--
DINLC	Channel inlet efficiency curves in Block Data	--

## EXAMPLE PROBLEM

The remainder of this chapter presents the input and output from an example problem. The simulated area includes approximately 2500 feet of highway and 8.5 acres of contributory drainage area.

A schematic diagram of the example problem's prototype is shown in Figure IV-15. The input data for the problem is given as Exhibit IV-1; output from the example problem follows as Exhibit IV-2.


FIGURE IV-15. Program SRO
Test Problem











$$
\begin{aligned}
& \text { CARD READER UNIT NO. }(N 5)=5 \\
& \text { PRINTER UNIT NO. }(N G)=6 \\
& \text { BASIN NUMBER (BASIN) }=1 \\
& \text { NUMBER OF TIME STEPS (NSTEP) }=200 \\
& \text { TION TIME INTERVAL IN MINUTES (DELT) }=1.00 \\
& \text { NO. OF RAIN GAGES (NRGAG) }=1 . \\
& \text { BRITISM UNITS USED. (IMET }=0)
\end{aligned}
$$

Exhibit IV-2
(Continued)

ON $\stackrel{\leftrightarrow}{3}$ WATER RESOURCES DIV
CAMP DRESER AND MC
ANNANDALE, VIRGINIA
Exhibit IV-2
(Continued)



infiltration data
$\begin{array}{cc}\text { DECAY } & \text { MAX DEPTH } \\ \text { HR-1 } & \text { INCHES }\end{array}$
FOR INLETS ON GRADE IN GUTTERS: OEPRESSED GRATE INLETS SELECTED
Exhibit IV-2
(Continued)


Exhibit IV-2
(Continued)
WATER RESOURCES DIVISION
CAMP DRESSER AND MCKEE
ANNANDALEVIRGINIA


			$n u$	$\begin{aligned} & 174 \\ & 1.19 \end{aligned}$
0	SNIS＊G	$N O I \perp N 3130$		83
	0 S	3NN甘HJ YN		30
$\mathcal{G}$	$=S T J N N \forall H$	3／Sy 31 ก		y3
	00 tost	00		
	$00 力^{\circ} 41$	00		
	00ヶ＊GT	で		
	$00 \rightarrow 51$	12		
	OOtobI	00		
	$11 \pm 8$		1 ${ }^{\text {J }}$	
	OVİdS		$1 d 3$	
	NSIS30	Wh	I X	

FEDERAL HIGHWAY ADNINISTRATION
DEPARMENT OF TRANSORTATION





INLET
NO
--
00
100
0
901
9000

$\underset{(F T)}{\text { Length }}$



total
$* * * *$
$* * * * *$
$* * * *$
INLET



```
**** UREAN highway drainage model *****
```

surface runoff program



1


Exhibit IV－2
（Continued）

GUTER／
CHANNEL
NUMBER

VISION
$33 y 3 n$
WATER RESCURCES DI
CAMP DRESSER AND Y
ANNANDALE:VIRGINIA
$\begin{array}{cl}\text { WATERSHED } & \text { DRAIN RAINGAGE AREA } \\ \text { WIOTH } & \text { GUTTER NOMBER OF } \\ \text { GURES) SUBAREAS }\end{array}$
federal highay administration
surface runoff test problem
FEDERAL HIGHWAY ADPINISTRATION
DEPARTMENT OF TRAHSPORTATION
WASHINGTON, O.C.
surface runoff program
**** URBAN HIGHIVAY ORAINAGE MODEL
$* * * *$
$* * * *$
$* * * *$

WATERSHED NO.	WATERSHED NAME.	WATERSHED WIOTH		DRAIN GUTTER	$\begin{aligned} & \text { RAINGAGE } \\ & \text { NO. } \end{aligned}$	AREA (ACRES)	NUMBER OF SUBAREAS
1	524	178.00		322	1	.10	1
	Subarea definition						
	$\begin{aligned} & \text { AREA } \\ & \text { (ACRES) } \\ & 10 \end{aligned}$	$\begin{gathered} \text { SURFACE } \\ \text { TYPE } \\ 3 \end{gathered}$	$\begin{gathered} \text { SLOPE } \\ (F T / F T) \\ .08 \end{gathered}$	$, \begin{array}{cc} \text { STORAGE } & \text { MANNING N } \\ \text { (IN) } & (F T) 1 / 6 \\ .16 & .16 \end{array}$			
WATERSHED NO.	WATERSHED name	WATERSHED WIDTH		DRAIN gutter	$\begin{aligned} & \text { RAINGAGE } \\ & \text { NO. } \end{aligned}$	AREA (ACRES)	NUMBER OF SUBAREAS
2	525	489.00		323	1	. 60	1
subarea definition							
	$\begin{aligned} & \text { AREA } \\ & (\text { ACRES }) \\ & \cdot 60 \end{aligned}$	surface TYPE 3	$\begin{aligned} & \text { SLOPE } \\ & (F T / F T) \\ & .03 \end{aligned}$	$\begin{aligned} & \text { STOR } \\ & \text { IIN } \end{aligned}$	$\begin{array}{lr} \text { AGE } & \text { MANN } \\ \text { 16 } & \text { OFT } \end{array}$	$\begin{aligned} & \text { NG } N^{\prime} \\ & 1 / 6 \\ & 16 \end{aligned}$	

Exhibit IV-2
(Continued)


WATERSHED NO.	Watershed NAME	WATERSHED WIDTH		DRAIN gutter	RAINGAGE NO.	AREA (ACRES)	NUMBER OF SUBAREAS
3	523	601.00		321	1	1.70	1
		subarea o	OCFINITI				
	AREA (ACRES) 1.70	$\begin{gathered} \text { SURFACE } \\ \text { TYPE } \\ 1 \end{gathered}$	$\begin{gathered} \text { SLOPE } \\ (F T / F T) \\ .02 \end{gathered}$	$\begin{gathered} \text { STOF } \\ \text { IN } \end{gathered}$	$\begin{array}{lc} A G E & \text { MANN } 1 \\ 10 & \text { FFT } \end{array}$	$\begin{aligned} & \text { NG N } \\ & 1 / 6 \\ & 10 \end{aligned}$	
$\begin{aligned} & \text { WATERSHED } \\ & \text { NO. } \end{aligned}$	WATERSHED NAME	WATERSHED WIDTH		$\begin{aligned} & \text { DRAIN } \\ & \text { GUTTEF } \end{aligned}$	$\begin{aligned} & \text { RAINGAGE } \\ & \text { NO. } \end{aligned}$	$\begin{aligned} & \text { AREA } \\ & \text { (ACRES) } \end{aligned}$	NUMBER OF SUBAREAS
4	1526	636.00		317	1	2.70	1
		Subarea d	definiti				
	AREA (ACRES) 2. 70	$\begin{gathered} \text { SURFACE } \\ \text { TYPE } \\ 2 \end{gathered}$	$\begin{gathered} \text { SLOPE } \\ (F T / F T) \\ .07 \end{gathered}$	STO	$\begin{array}{lc} \text { AGE } & \text { MANN } 1 \\ \hline 46 & \text { (FT } \end{array}$	$\begin{aligned} & \text { NG N } \\ & 1 / 6 \\ & 20 \end{aligned}$	

Exhibit IV-2
(Continued)


8.50
TOTAL NUMEER OF SUBCATCHMENTS
TOTAL TRIEUTARY AREA (ACKES)



Exhibit IV-2
(Continued)

3 INLETS
 HYDROERAPHS
100 arrangement of suzcatchments and channels
$\begin{array}{ll}\text { CHANNEL } & \text { TRIBUT } \\ & \text { OR MAIN } \\ 322 & \\ 323 & 322 \\ 100 & 323 \\ 317 & 100 \\ 321 & 317 \\ 101 & 321 \\ 320 & 101 \\ \text { INLET } & \text { TRIBUTA } \\ 100 & 323 \\ 101 & 321 \\ 9000 & 320\end{array}$
$\begin{array}{ll}\text { Channel } & \text { TRIBUTARY GHANNEL } \\ & \text { OR MAIN CHANNEL }\end{array}$
R MAIN CHANNEL
응
-


[^3]OF INFLOW $-.001 \in 11$
Exhibit IV-2
(Continued)
\[

$$
\begin{aligned}
& \text { TOTAL SUSPENOED SOLIDS WASHOFF BY SUBAREA TYPE, IN KILOGRAMS } \\
& \text { WATERSMED } 524 \\
& \text { SUBAREA TYPE } 4 . \\
& \text { ORIGINAL AMOUNT } 2.920 \\
& \text { AMOUNT REMAINING } .5748 \\
& \text { AMOUNT WASHED OFF } 2.345 \\
& \text { SUBAREA TGTAL } 2.348
\end{aligned}
$$
\]




total suspended solids washoff by subarea type, in kilograms
WATERSMED 522
SUZAREA 1 TYPE 5
ORIGINAL AMOUNT 120.8
AMOUNT REMAINING 38.51
AMOUNT WASHED OFF 82.24


Exhibit IV-2
(Continued) DESIGN MAXIMUM MAXIMUM MAXIMUM MAXIMUM TIME

NMNOO
ぶざさ む

SUMMARY STATISTICS FOR ABOVE－GROUND GUTTERS／CHANNELS

 $\geq$
ぶ
－•••

が心の



$\geq{ }^{2}$	ぶのホホ
－い	におさNた
Hy ${ }_{\text {H }}$	－以゙が，
い」	
$\bigcirc$	




Exhibit IV－2
（Continued）





$\frac{M}{I}$
SUMMARY OF QUANTITY AND QUALITY RESULTS AT LOCATION 322


-
GUALITY IN (MG/L) EXCEPT COLIEORMS IN (1000/100ML)
OML)



3 艺



 $\begin{array}{lll}00000000 & 00 & 00 \\ 000000 & 0 & 0\end{array}$ 00000000000000000000000000000000000000




$000000004 M$ O000000000月G0000000000000000000





#  













$\stackrel{\square}{0}$

3
1
0
0

$\stackrel{n}{4}$
$\stackrel{3}{0}$








 $00000 \div 0007 H F H M N N N N N M M M M M M M M M N N N O 000000000$ $\frac{N}{2}$








8

n:
苦岂




















4
0
0





$00000000 \pm \infty H N M M M M M M J T M N N N O 009000000000000$







$\xrightarrow[Z]{\text { I }}$
د
0000000000000000000000000000000000000000

M
-







ㄷ0000000 000000000000000000000000000000 = =
8

$\stackrel{4}{4}$










SUMMARY OF QUANTITY AND OUALITY RESULTS AT LOCATION 101

U





O

ご岂
-





















24

QUALITY IN (MG/L) EXCEPT COLIFORMS IN ( $1000 / 100 M L$ )
TOT-SS COLI

## CHAPTER V

REFERENCES

1. Izzard, Carl F., "Simplified Method for Design of Curb Opening Inlets," Transportation Research Record 631, Transportation Research Board, Washington, D.C. 1977.
2. Burgi, P.H. and D.E. Gober, "Bicycle-Safe Grate Inlets Study, Volume 1 Hydraulic and Safety Charactreistics of Selected Grate Inlets on Continuous Grades," Report NO. FHWA-RD-77-24, Federal Highway Administration, Washington, D.C., June 1977
3. Roesner, L.A., P.R. Giguere, and L.C. Davis, "User's Manual for the Storm Runoff Quality Model RUNQUAL," prepared for the Southeast Michigan Council of Governments, July 1977.
4. American Society of Civil Engineers, Manual of Engineering Practice No. 37, Design and Construction of Sanitary and Storm Sewers, 1962.
5. Golding, B., "HNV-Santa Barbara Urban Hydrograph Method," Proceedings of the Storm Water Management Model Users Group Meeting, June 19-20, 1980, U.S. Environmental Protection Agency (to be published).
6. Crawford, N.H. and R.K. Linsley, Digital Simulation in Hydrology, Stanford Watershed Model IV, 1966.

## FEDERALLY COORDINATED PROGRAM (FCP) OF HIGHWAY RESEARCH AND DEVELOPMENT

The Offices of Research and Development (R\&D) of the Federal Highway Administration (FHWA) are responsible for a broad program of staff and contract research and development and a Federal-aid program, conducted by or through the State highway transportation agencies, that includes the Highway Planning and Research ( $\mathrm{HP} \mathrm{\& R}$ ) program and the National Cooperative Highway Research Program (NCHRP) managed by the Transportation Research Board. The FCP is a carefully selected group of projects that uses research and development resources to obtain timely solutions to urgent national highway engineering problems.*

The diagonal double stripe on the cover of this report represents a highway and is color-coded to identify the FCP category that the report falls under. A red stripe is used for category l ; dark blue for category 2 , light blue for category 3, brown for category 4 , gray for category 5, green for categories 6 and 7, and an orange stripe identifies category 0 .

## FCP Category Descriptions

1. Improved Highway Design and Operation for Safety
Safety R\&D addresses problems associated with the responsibilities of the FHWA under the Highway Safety Act and includes investigation of appropriate design standards, roadside hardware, signing, and physical and scientific data for the formulation of improved safety regulations.
2. Reduction of Traffic Congestion, and Improved Operational Efficiency
Traffic R\&D is concerned with increasing the operational efficiency of existing highways by advancing technology, by improving designs for existing as well as new facilities, and by balancing the demand-capacity relationship through traffic management techniques such as bus and carpool preferential treatment, motorist information, and rerouting of traffic.
3. Environmental Considerations in Highway Design, Location, Construction, and Operation
Environmental R\&D is directed toward identifying and evaluating highway elements that affect

[^4]the quality of the human environment. The goals are reduction of adverse highway and traffic impacts, and protection and enhancement of the environment.
4. Improved Materials Utilization and Durability
Materials R\&D is concerned with expanding the knowledge and technology of materials properties, using available natural materials, improving structural foundation materials, recycling highway materials, converting industrial wastes into useful highway products, developing extender or substitute materials for those in short supply, and developing more rapid and reliable testing procedures. The goals are lower highway construction costs and extended maintenance-free operation.
5. Improved Design to Reduce Costs, Extend Life Expectancy, and Insure Structural Safety
Structural R\&D is concerned with furthering the latest technological advances in structural and hydraulic designs, fabrication processes, and construction techniques to provide safe, efficient highways at reasonable costs.
6. Improved Technology for Highway Construction
This category is concerned with the research, development, and implementation of highway construction technology to increase productivity, reduce energy consumption, conserve dwindling resources, and reduce costs while improving the quality and methods of construction.
7. Improved Technology for Highway Maintenance
This category addresses problems in preserving the Nation's highways and includes activities in physical maintenance, traffic services, management, and equipment. The goal is to maximize operational efficiency and safety to the traveling public while conserving resources.
0. Other New Studies

This category, not included in the seven-volume official statement of the FCP, is concerned with HP\&R and NCHRP studies not specifically related to FCP projects. These studies involve R\&D support of other FHWA program office research.

## FEDERALLY COORDINATED PROGRAM (FCP) OF HIGHWAY RESEARCH AND DEVELOPMENT

The Offices of Research and Development (K\&D) of the Federal Highway Admixistration (FHWA) are responsible for a broad program of staff and contract research and development and a Federal-aid program, conducted by or through the State highway Eransportation agencies, that includes the Highway Planning and Research (HP\&R) program and the National Cooper\&ive Highway Research Program (NCHRP) managed by the Transportation Research Board. The FCP is a carefully selected group of projects that uses research and development resources to obtain timely solutions to urgent national highway engineering problems.*
The diagonal double stripe on the cover of this report represents a highway and is color-coded to identify the FCP category that the report falls under. A red stripe is used for category 1 , dark blue for category 2, light blue for category 3, brown for category 4, gray for category 5, green for categories 6 and 7, and an orange stripe identifies category 0 .

## FCP Category Descriptions

1. Improved Highway Design and Operation for Safety
Safety R\&D addresses problems associated with the responsibilities of the FHWA under the Highway Safety Act and includes investigation of appropriate design standards, roadside hardware, signing, and physical and scientific data for the formulation of improved safety regulations.
2. Reduction of Traffic Congestion, and Improved Operational Efficiency
Traffic R\&D is concerned with increasing the operational efficiency of existing highways by advancing technology, by improving designs for existing as well as new facilities, and by balancing the demand-capacity relationship through traffic management techniques such as bus and carpool preferential treatment, motorist information, and rerouting of traffic.
3. Environmental Considerations in Highway Design, Location, Construction, and Operation
Environmental R\&D is directed toward identifying and evaluating highway elements that affect

[^5]the quality of the human environment. The goals are reduction of adverse highway and traffic impacts, and protection and enhancernent of the environment.
4. Impreved Materials Utilization and Durability
Materials R\&D is concerned with expanding the knowledge and technology of materials properties, using available natural materials, improving structural foundation materials, recycling highway materisis, converting industrial wastes into useful highway products, developing extender or substitute materials for those in short supply, and developing more rapid and reliable testing procedures. The goals are lower highway construction costs and extended maintenance-free operation.
5. Improved Design to Reduce Costs, Extend Life Expectancy, and Insure Structural Safety
Structural K\&D is concerned with furthering the latest technological advances in structural and hydraulic designs, fabrication processes, and construction techniques to provide safe, efficient highways at reasonable costs.
6. Improved Technology for Highway Construction
This category is concerned with the research, development, and implementation of highway construction technology to increase productivity, reduce energy consumption, conserve dwindling resources, and reduce costs while improving the quality and methods of construction.
7. Improved Technology for Highway Prifaintenance
This category addresses problems in preserving the Nation's highways and includes activities in physical maintenance, traffic services, management, and equipment. The goal is to maximize operational efficiency and safety to the traveling public while conserving resources.
0. Other New Studies

This category, not included in the seven-volume official statement of the FCP, is concerned with HP\&R and NCHRP studies not specifically related to $F C P$ projects. These studies involve R\&D support of other FHWA program office research.

231


[^0]:    subroutine ovrbnk (u, ovroin,ovrout,ovraxo, ovraxi,ovroel)

[^1]:    DDELV=GLEN(J) *((OVRGSI(JUP) + OVRGS2(JUP)) *D1 + OVRWTH(JUP))
    $C$
    $C * * *$ CROSS-SECTIONAL AREA
    $u \stackrel{*}{*}$

[^2]:    ひ シ

[^3]:    RAINFALL ON WATERSHED (FT3) . $660040 \mathrm{E}+05$
    RAINFALL ON STORAGE (FT3)O.
    INFLOW VOLUME (FT3)C.
    $-\cdots--$ TOTAL INPUT VOLUME (FT3)

    > INFILTRATION (FT3) INLET VOLUNE (FT3) $492665 E+05$ WATERSHED STORAGE (FT3)0 SURCHARGE STORAGE (FT3) 0 .

    - .660040を+05
    

[^4]:    - The complete seven-volume official statement of the FCP is available from the National Technical Information Service, Springfield, Va 22161. Single copies of the introductory volume are avilable without charge from Program Analysia (HRD-3), Officea of Research and Development, Federal Highway Administration, Wahington, D.C. 20590.

[^5]:    *The complete seven-volume official statement of the FCP is available from the National Technical Information Service, Springfield, Va. 22161. Single copies of the introductory volume are available without charge from Program Analysis (HRD-3), Offices of Research and Developmens, Federal Highway Admin istration, Washington, D.C. 20590.

